C. Grönwall, J. Rydell, M. Tulldahl, E. Zhang, Fredrik Bissmarck, E. Bilock
{"title":"两个定位和导航成像系统","authors":"C. Grönwall, J. Rydell, M. Tulldahl, E. Zhang, Fredrik Bissmarck, E. Bilock","doi":"10.1109/RED-UAS.2017.8101654","DOIUrl":null,"url":null,"abstract":"We present two approaches for using imaging sensors on-board small unmanned aerial systems (UAS) for positioning and navigation. Two types of sensors are used; laser scanners and a camera operating in the visual wavelengths. The laser scanners produce sparse 3D data that are registered to produce a local map. For the images from the video camera the optical flow and height estimates are fused and then matched with a geo-referenced aerial image. Both approaches include data from the inertial navigation system. The approaches can be used for accurate ego-positioning, and thus for navigation. The approaches are GPS independent and can work in GPS denied conditions, for example urban canyons, indoor environments, forest areas or while jammed. Applications are primarily within societal security and military defense.","PeriodicalId":299104,"journal":{"name":"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Two imaging systems for positioning and navigation\",\"authors\":\"C. Grönwall, J. Rydell, M. Tulldahl, E. Zhang, Fredrik Bissmarck, E. Bilock\",\"doi\":\"10.1109/RED-UAS.2017.8101654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two approaches for using imaging sensors on-board small unmanned aerial systems (UAS) for positioning and navigation. Two types of sensors are used; laser scanners and a camera operating in the visual wavelengths. The laser scanners produce sparse 3D data that are registered to produce a local map. For the images from the video camera the optical flow and height estimates are fused and then matched with a geo-referenced aerial image. Both approaches include data from the inertial navigation system. The approaches can be used for accurate ego-positioning, and thus for navigation. The approaches are GPS independent and can work in GPS denied conditions, for example urban canyons, indoor environments, forest areas or while jammed. Applications are primarily within societal security and military defense.\",\"PeriodicalId\":299104,\"journal\":{\"name\":\"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RED-UAS.2017.8101654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED-UAS.2017.8101654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two imaging systems for positioning and navigation
We present two approaches for using imaging sensors on-board small unmanned aerial systems (UAS) for positioning and navigation. Two types of sensors are used; laser scanners and a camera operating in the visual wavelengths. The laser scanners produce sparse 3D data that are registered to produce a local map. For the images from the video camera the optical flow and height estimates are fused and then matched with a geo-referenced aerial image. Both approaches include data from the inertial navigation system. The approaches can be used for accurate ego-positioning, and thus for navigation. The approaches are GPS independent and can work in GPS denied conditions, for example urban canyons, indoor environments, forest areas or while jammed. Applications are primarily within societal security and military defense.