无界误差概率通信复杂度的线性下界

J. Forster
{"title":"无界误差概率通信复杂度的线性下界","authors":"J. Forster","doi":"10.1109/CCC.2001.933877","DOIUrl":null,"url":null,"abstract":"We prove a general lower bound on the complexity of unbounded error probabilistic communication protocols. This result improves on a lower bound for bounded error protocols from Krause (1996). As a simple consequence we get the, to our knowledge, first linear lower bound on the complexity of unbounded error probabilistic communication protocols for the functions defined by Hadamard matrices. We also give an upper bound on the margin of any embedding of a concept class in half spaces.","PeriodicalId":240268,"journal":{"name":"Proceedings 16th Annual IEEE Conference on Computational Complexity","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"208","resultStr":"{\"title\":\"A linear lower bound on the unbounded error probabilistic communication complexity\",\"authors\":\"J. Forster\",\"doi\":\"10.1109/CCC.2001.933877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a general lower bound on the complexity of unbounded error probabilistic communication protocols. This result improves on a lower bound for bounded error protocols from Krause (1996). As a simple consequence we get the, to our knowledge, first linear lower bound on the complexity of unbounded error probabilistic communication protocols for the functions defined by Hadamard matrices. We also give an upper bound on the margin of any embedding of a concept class in half spaces.\",\"PeriodicalId\":240268,\"journal\":{\"name\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"208\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2001.933877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2001.933877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 208

摘要

我们证明了无界错误概率通信协议复杂度的一般下界。这个结果改进了Krause(1996)给出的有界错误协议的下界。作为一个简单的结果,我们得到了,据我们所知,对于由Hadamard矩阵定义的函数,无界误差概率通信协议的复杂度的第一个线性下界。我们还给出了概念类在半空间内任意嵌入的边界的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A linear lower bound on the unbounded error probabilistic communication complexity
We prove a general lower bound on the complexity of unbounded error probabilistic communication protocols. This result improves on a lower bound for bounded error protocols from Krause (1996). As a simple consequence we get the, to our knowledge, first linear lower bound on the complexity of unbounded error probabilistic communication protocols for the functions defined by Hadamard matrices. We also give an upper bound on the margin of any embedding of a concept class in half spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信