基于局部放电和振动监测的GIL故障诊断与定位方法研究

Sen Liu
{"title":"基于局部放电和振动监测的GIL故障诊断与定位方法研究","authors":"Sen Liu","doi":"10.1115/icone29-92174","DOIUrl":null,"url":null,"abstract":"\n At present, the ultra-high voltage transmission lines in nuclear power plants mostly use Gas Insulated transmission lines (GIL). This type of transmission line transmits large natural power, and GILs are mostly laid through corridors and themselves are metal-enclosed gas -insulated structures, which are affected by the natural environment and have low reliability. high. However, due to the long length of each independent air chamber of the GIL, when it fails, it is accurately difficult to monitor the fault and locate the fault, which reduces the availability of the unit and brings about greater economic losses. In this paper, through the simulation test of the vibration signal propagation when the GIL fails, the signal attenuation law of the vibration signal passing through the insulator is tested, and the fault cell is located through the signal analysis of the vibration sensors in different directions. At the same time, through the simulation test research on the discarge faults of metal spikes, floating potential and metal particles in the GIL, after obtaining the partial discharge signal through the sensor, the corresponding partial discharge eigenvalues are extracted, and the eigenvalues are classified based on the SVM method to realize the GIL fault. Which can provide support for engineering practice.","PeriodicalId":422334,"journal":{"name":"Volume 12: Innovative and Smart Nuclear Power Plant Design","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on GIL Fault Diagnosis and Location Method Based on Partial Discharge and Vibration Monitoring\",\"authors\":\"Sen Liu\",\"doi\":\"10.1115/icone29-92174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n At present, the ultra-high voltage transmission lines in nuclear power plants mostly use Gas Insulated transmission lines (GIL). This type of transmission line transmits large natural power, and GILs are mostly laid through corridors and themselves are metal-enclosed gas -insulated structures, which are affected by the natural environment and have low reliability. high. However, due to the long length of each independent air chamber of the GIL, when it fails, it is accurately difficult to monitor the fault and locate the fault, which reduces the availability of the unit and brings about greater economic losses. In this paper, through the simulation test of the vibration signal propagation when the GIL fails, the signal attenuation law of the vibration signal passing through the insulator is tested, and the fault cell is located through the signal analysis of the vibration sensors in different directions. At the same time, through the simulation test research on the discarge faults of metal spikes, floating potential and metal particles in the GIL, after obtaining the partial discharge signal through the sensor, the corresponding partial discharge eigenvalues are extracted, and the eigenvalues are classified based on the SVM method to realize the GIL fault. Which can provide support for engineering practice.\",\"PeriodicalId\":422334,\"journal\":{\"name\":\"Volume 12: Innovative and Smart Nuclear Power Plant Design\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 12: Innovative and Smart Nuclear Power Plant Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone29-92174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 12: Innovative and Smart Nuclear Power Plant Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-92174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,核电站超高压输电线路多采用气体绝缘输电线路。该类输电线路输送的自然功率较大,且多通过走廊敷设,其本身为金属封闭的气体绝缘结构,受自然环境影响较大,可靠性较低。高。但由于GIL各独立气室长度较长,当其发生故障时,难以准确监测故障并定位故障,降低了机组的可用性,带来较大的经济损失。本文通过对GIL失效时振动信号传播的仿真试验,测试了振动信号通过绝缘子时的信号衰减规律,并通过对不同方向振动传感器的信号分析,定位出故障单元。同时,通过对GIL中金属尖峰、浮电位、金属颗粒等放电故障的仿真试验研究,通过传感器获取局部放电信号后,提取相应的局部放电特征值,并基于SVM方法对特征值进行分类,实现GIL故障。可为工程实践提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on GIL Fault Diagnosis and Location Method Based on Partial Discharge and Vibration Monitoring
At present, the ultra-high voltage transmission lines in nuclear power plants mostly use Gas Insulated transmission lines (GIL). This type of transmission line transmits large natural power, and GILs are mostly laid through corridors and themselves are metal-enclosed gas -insulated structures, which are affected by the natural environment and have low reliability. high. However, due to the long length of each independent air chamber of the GIL, when it fails, it is accurately difficult to monitor the fault and locate the fault, which reduces the availability of the unit and brings about greater economic losses. In this paper, through the simulation test of the vibration signal propagation when the GIL fails, the signal attenuation law of the vibration signal passing through the insulator is tested, and the fault cell is located through the signal analysis of the vibration sensors in different directions. At the same time, through the simulation test research on the discarge faults of metal spikes, floating potential and metal particles in the GIL, after obtaining the partial discharge signal through the sensor, the corresponding partial discharge eigenvalues are extracted, and the eigenvalues are classified based on the SVM method to realize the GIL fault. Which can provide support for engineering practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信