{"title":"可视化来自社交媒体流的图形差异","authors":"Minjeong Shin, Dongwoo Kim, Jae Hee Lee, Umanga Bista, Lexing Xie","doi":"10.1145/3289600.3290616","DOIUrl":null,"url":null,"abstract":"We propose KGdiff, a new interactive visualization tool for social media content focusing on entities and relationships. The core component is a layout algorithm that highlights the differences between two graphs. We apply this algorithm on knowledge graphs consisting of named entities and their relations extracted from text streams over different time periods. The visualization system provides additional information such as the volume and frequency ranking of entities and allows users to select which parts of the graph to visualize interactively. On Twitter and news article collections, KGdiff allows users to compare different data subsets. Results of such comparisons often reveal topical or geographical changes in a discussion. More broadly, graph differences are useful for a wide range of relational data comparison tasks, such as comparing social interaction graphs, identifying changes in user behavior, or discovering differences in graphs from distinct sources, geography, or political stance.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizing Graph Differences from Social Media Streams\",\"authors\":\"Minjeong Shin, Dongwoo Kim, Jae Hee Lee, Umanga Bista, Lexing Xie\",\"doi\":\"10.1145/3289600.3290616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose KGdiff, a new interactive visualization tool for social media content focusing on entities and relationships. The core component is a layout algorithm that highlights the differences between two graphs. We apply this algorithm on knowledge graphs consisting of named entities and their relations extracted from text streams over different time periods. The visualization system provides additional information such as the volume and frequency ranking of entities and allows users to select which parts of the graph to visualize interactively. On Twitter and news article collections, KGdiff allows users to compare different data subsets. Results of such comparisons often reveal topical or geographical changes in a discussion. More broadly, graph differences are useful for a wide range of relational data comparison tasks, such as comparing social interaction graphs, identifying changes in user behavior, or discovering differences in graphs from distinct sources, geography, or political stance.\",\"PeriodicalId\":143253,\"journal\":{\"name\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3289600.3290616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289600.3290616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visualizing Graph Differences from Social Media Streams
We propose KGdiff, a new interactive visualization tool for social media content focusing on entities and relationships. The core component is a layout algorithm that highlights the differences between two graphs. We apply this algorithm on knowledge graphs consisting of named entities and their relations extracted from text streams over different time periods. The visualization system provides additional information such as the volume and frequency ranking of entities and allows users to select which parts of the graph to visualize interactively. On Twitter and news article collections, KGdiff allows users to compare different data subsets. Results of such comparisons often reveal topical or geographical changes in a discussion. More broadly, graph differences are useful for a wide range of relational data comparison tasks, such as comparing social interaction graphs, identifying changes in user behavior, or discovering differences in graphs from distinct sources, geography, or political stance.