车辆边缘计算中的节能负载卸载与功率控制

Zhenyu Zhou, Pengju Liu, Zheng Chang, Chen Xu, Yan Zhang
{"title":"车辆边缘计算中的节能负载卸载与功率控制","authors":"Zhenyu Zhou, Pengju Liu, Zheng Chang, Chen Xu, Yan Zhang","doi":"10.1109/WCNCW.2018.8368975","DOIUrl":null,"url":null,"abstract":"In this paper, an energy-efficient vehicular edge computing (VEC) framework is proposed for in-vehicle user equipments (UEs) with limited battery capacity. Firstly, the energy consumption minimization problem is formulated as a joint workload offloading and power control problem, with the explicit consideration of energy consumption and delay models. Queuing theory is applied to derive the stochastic traffic models at UEs and VEC nodes. Then, the original NP-hard problem is transformed to a convex global consensus problem, which can be decomposed into several parallel subproblems and solved subsequently. Next, an alternating direction method of multipliers (ADMM)-based energy-efficient resource allocation algorithm is developed, whose outer loop representing iterations of nonlinear fractional programming, while inner loop representing iterations of primal and dual variable updates. Finally, the relationships between energy consumption and key parameters such as workload offloading portion and transmission power are validated through numerical results.","PeriodicalId":122391,"journal":{"name":"2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Energy-efficient workload offloading and power control in vehicular edge computing\",\"authors\":\"Zhenyu Zhou, Pengju Liu, Zheng Chang, Chen Xu, Yan Zhang\",\"doi\":\"10.1109/WCNCW.2018.8368975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an energy-efficient vehicular edge computing (VEC) framework is proposed for in-vehicle user equipments (UEs) with limited battery capacity. Firstly, the energy consumption minimization problem is formulated as a joint workload offloading and power control problem, with the explicit consideration of energy consumption and delay models. Queuing theory is applied to derive the stochastic traffic models at UEs and VEC nodes. Then, the original NP-hard problem is transformed to a convex global consensus problem, which can be decomposed into several parallel subproblems and solved subsequently. Next, an alternating direction method of multipliers (ADMM)-based energy-efficient resource allocation algorithm is developed, whose outer loop representing iterations of nonlinear fractional programming, while inner loop representing iterations of primal and dual variable updates. Finally, the relationships between energy consumption and key parameters such as workload offloading portion and transmission power are validated through numerical results.\",\"PeriodicalId\":122391,\"journal\":{\"name\":\"2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNCW.2018.8368975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2018.8368975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

针对电池容量有限的车载用户设备,提出了一种高效节能的车载边缘计算(VEC)框架。首先,将能耗最小化问题表述为负载卸载和功率控制的联合问题,明确考虑了能耗模型和时延模型;应用排队理论推导了ue节点和VEC节点的随机交通模型。然后,将原NP-hard问题转化为一个凸全局共识问题,并将其分解为若干并行子问题进行求解。其次,提出了一种基于交替方向乘法器(ADMM)的节能资源分配算法,其外环表示非线性分式规划迭代,内环表示原始变量和对偶变量更新迭代。最后,通过数值结果验证了能耗与负载分担比例、传动功率等关键参数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-efficient workload offloading and power control in vehicular edge computing
In this paper, an energy-efficient vehicular edge computing (VEC) framework is proposed for in-vehicle user equipments (UEs) with limited battery capacity. Firstly, the energy consumption minimization problem is formulated as a joint workload offloading and power control problem, with the explicit consideration of energy consumption and delay models. Queuing theory is applied to derive the stochastic traffic models at UEs and VEC nodes. Then, the original NP-hard problem is transformed to a convex global consensus problem, which can be decomposed into several parallel subproblems and solved subsequently. Next, an alternating direction method of multipliers (ADMM)-based energy-efficient resource allocation algorithm is developed, whose outer loop representing iterations of nonlinear fractional programming, while inner loop representing iterations of primal and dual variable updates. Finally, the relationships between energy consumption and key parameters such as workload offloading portion and transmission power are validated through numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信