{"title":"低维内隐偏好预测的潜在因子分析","authors":"Zili Zhou, Guandong Xu, Xiao Zhu, S. Liu","doi":"10.1109/BESC.2017.8256380","DOIUrl":null,"url":null,"abstract":"User preference prediction aims to predict a users future preferences on a large number of items according to his/her preference history. To achieve this goal, many models have been proposed, but mainly for explicit preference data, such as 5-star ratings. Nevertheless, real-world data are often in implicit format, such as purchase action, and the number of items is not always large. In this paper, we demonstrate the use of latent factor models for solving the task of predicting user preferences on implicit and low-dimensional dataset.","PeriodicalId":142098,"journal":{"name":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent factor analysis for low-dimensional implicit preference prediction\",\"authors\":\"Zili Zhou, Guandong Xu, Xiao Zhu, S. Liu\",\"doi\":\"10.1109/BESC.2017.8256380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User preference prediction aims to predict a users future preferences on a large number of items according to his/her preference history. To achieve this goal, many models have been proposed, but mainly for explicit preference data, such as 5-star ratings. Nevertheless, real-world data are often in implicit format, such as purchase action, and the number of items is not always large. In this paper, we demonstrate the use of latent factor models for solving the task of predicting user preferences on implicit and low-dimensional dataset.\",\"PeriodicalId\":142098,\"journal\":{\"name\":\"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BESC.2017.8256380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC.2017.8256380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Latent factor analysis for low-dimensional implicit preference prediction
User preference prediction aims to predict a users future preferences on a large number of items according to his/her preference history. To achieve this goal, many models have been proposed, but mainly for explicit preference data, such as 5-star ratings. Nevertheless, real-world data are often in implicit format, such as purchase action, and the number of items is not always large. In this paper, we demonstrate the use of latent factor models for solving the task of predicting user preferences on implicit and low-dimensional dataset.