基于模型无关逆映射和模型重用的领域自适应

Zhihui Shen, Ming Li
{"title":"基于模型无关逆映射和模型重用的领域自适应","authors":"Zhihui Shen, Ming Li","doi":"10.1109/ICDM.2018.00163","DOIUrl":null,"url":null,"abstract":"Domain adaptation, which is able to leverage the abundant supervision from the source domain and limited supervision in the target domain to construct a model for the data in the target domain, has drawn significant attentions. Most of the existing domain adaptation methods elaborate to map the information derived from the source domain to the target domain for model construction in the target domain. However, such a 'Source' (S) to 'Target' (T) mapping usually involves 'tailoring' the information from the source domain to fit the target domain, which may lose valuable information in the source domain for model construction. Moreover, such a mapping is usually tightly coupled with the model construction, which is more complex than a separate model construction or mapping construction. In this paper, we provide an alternative way for domain adaptation, named T2S. Instead of mapping the 'S' to 'T' and constructing a model in 'T', we inversely map 'T' to 'S' and reuse the model that has been well-trained with abundant information in 'S' for prediction. Such an approach enjoys the abundant information in source domain for model construction and the simplicity of learning mapping separately with limited supervision in target domain. Experiments on both synthetic and real-world data sets indicate the effectiveness of our framework.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"T2S: Domain Adaptation Via Model-Independent Inverse Mapping and Model Reuse\",\"authors\":\"Zhihui Shen, Ming Li\",\"doi\":\"10.1109/ICDM.2018.00163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain adaptation, which is able to leverage the abundant supervision from the source domain and limited supervision in the target domain to construct a model for the data in the target domain, has drawn significant attentions. Most of the existing domain adaptation methods elaborate to map the information derived from the source domain to the target domain for model construction in the target domain. However, such a 'Source' (S) to 'Target' (T) mapping usually involves 'tailoring' the information from the source domain to fit the target domain, which may lose valuable information in the source domain for model construction. Moreover, such a mapping is usually tightly coupled with the model construction, which is more complex than a separate model construction or mapping construction. In this paper, we provide an alternative way for domain adaptation, named T2S. Instead of mapping the 'S' to 'T' and constructing a model in 'T', we inversely map 'T' to 'S' and reuse the model that has been well-trained with abundant information in 'S' for prediction. Such an approach enjoys the abundant information in source domain for model construction and the simplicity of learning mapping separately with limited supervision in target domain. Experiments on both synthetic and real-world data sets indicate the effectiveness of our framework.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

领域自适应是利用源领域的丰富监督和目标领域的有限监督来构建目标领域数据模型的一种研究方法。现有的领域自适应方法大多是将源领域的信息映射到目标领域,以便在目标领域中构建模型。然而,这种“源”到“目标”的映射通常涉及到从源域“裁剪”信息以适应目标域,这可能会丢失源域中用于模型构建的有价值的信息。此外,这样的映射通常与模型构造紧密耦合,这比单独的模型构造或映射构造更复杂。在本文中,我们提供了另一种域自适应方法,称为T2S。我们不是将“S”映射到“T”并在“T”中构建模型,而是将“T”反向映射到“S”,并重用在“S”中经过良好训练并具有丰富信息的模型进行预测。该方法具有源域构建模型信息丰富、单独学习映射简单、目标域监督有限等优点。在合成数据集和真实数据集上的实验表明了我们的框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
T2S: Domain Adaptation Via Model-Independent Inverse Mapping and Model Reuse
Domain adaptation, which is able to leverage the abundant supervision from the source domain and limited supervision in the target domain to construct a model for the data in the target domain, has drawn significant attentions. Most of the existing domain adaptation methods elaborate to map the information derived from the source domain to the target domain for model construction in the target domain. However, such a 'Source' (S) to 'Target' (T) mapping usually involves 'tailoring' the information from the source domain to fit the target domain, which may lose valuable information in the source domain for model construction. Moreover, such a mapping is usually tightly coupled with the model construction, which is more complex than a separate model construction or mapping construction. In this paper, we provide an alternative way for domain adaptation, named T2S. Instead of mapping the 'S' to 'T' and constructing a model in 'T', we inversely map 'T' to 'S' and reuse the model that has been well-trained with abundant information in 'S' for prediction. Such an approach enjoys the abundant information in source domain for model construction and the simplicity of learning mapping separately with limited supervision in target domain. Experiments on both synthetic and real-world data sets indicate the effectiveness of our framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信