密度泛函微扰理论预测压电特性

Kaoru Nakamura, S. Higuchi, Toshiharu Ohnuma
{"title":"密度泛函微扰理论预测压电特性","authors":"Kaoru Nakamura, S. Higuchi, Toshiharu Ohnuma","doi":"10.5772/INTECHOPEN.76827","DOIUrl":null,"url":null,"abstract":"Among the various computational methods in materials science, only first-principles cal- culation based on the density functional theory has predictability for unknown material. Especially, density functional perturbation theory (DFPT) can effectively calculate the second derivative of the total energy with respect to the atomic displacement. By using DFPT method, we can predict piezoelectric constants, dielectric constants, elastic con - stants, and phonon dispersion relationship of any given crystal structure. Recently, we established the computational technique to decompose piezoelectric constants into each atomic contribution, which enable us to gain deeper insights to understand the piezo electricity of material. Therefore, in this chapter, we will introduce the computational framework to predict piezoelectric properties of polar material by means of DFPT and details of decomposition technique of piezoelectric constants. Then, we will show some case studies to predict and discover new piezoelectric material.","PeriodicalId":114469,"journal":{"name":"Perturbation Methods with Applications in Science and Engineering","volume":"49 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Density Functional Perturbation Theory to Predict Piezoelectric Properties\",\"authors\":\"Kaoru Nakamura, S. Higuchi, Toshiharu Ohnuma\",\"doi\":\"10.5772/INTECHOPEN.76827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the various computational methods in materials science, only first-principles cal- culation based on the density functional theory has predictability for unknown material. Especially, density functional perturbation theory (DFPT) can effectively calculate the second derivative of the total energy with respect to the atomic displacement. By using DFPT method, we can predict piezoelectric constants, dielectric constants, elastic con - stants, and phonon dispersion relationship of any given crystal structure. Recently, we established the computational technique to decompose piezoelectric constants into each atomic contribution, which enable us to gain deeper insights to understand the piezo electricity of material. Therefore, in this chapter, we will introduce the computational framework to predict piezoelectric properties of polar material by means of DFPT and details of decomposition technique of piezoelectric constants. Then, we will show some case studies to predict and discover new piezoelectric material.\",\"PeriodicalId\":114469,\"journal\":{\"name\":\"Perturbation Methods with Applications in Science and Engineering\",\"volume\":\"49 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Perturbation Methods with Applications in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.76827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perturbation Methods with Applications in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.76827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在材料科学的各种计算方法中,只有基于密度泛函理论的第一性原理计算对未知材料具有可预测性。特别是密度泛函微扰理论(DFPT)可以有效地计算总能量对原子位移的二阶导数。利用DFPT方法,我们可以预测任意晶体结构的压电常数、介电常数、弹性常数和声子色散关系。最近,我们建立了将压电常数分解为每个原子贡献的计算技术,这使我们能够更深入地了解材料的压电性。因此,在本章中,我们将介绍利用DFPT预测极性材料压电性能的计算框架和压电常数分解技术的细节。然后,我们将展示一些案例研究来预测和发现新的压电材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density Functional Perturbation Theory to Predict Piezoelectric Properties
Among the various computational methods in materials science, only first-principles cal- culation based on the density functional theory has predictability for unknown material. Especially, density functional perturbation theory (DFPT) can effectively calculate the second derivative of the total energy with respect to the atomic displacement. By using DFPT method, we can predict piezoelectric constants, dielectric constants, elastic con - stants, and phonon dispersion relationship of any given crystal structure. Recently, we established the computational technique to decompose piezoelectric constants into each atomic contribution, which enable us to gain deeper insights to understand the piezo electricity of material. Therefore, in this chapter, we will introduce the computational framework to predict piezoelectric properties of polar material by means of DFPT and details of decomposition technique of piezoelectric constants. Then, we will show some case studies to predict and discover new piezoelectric material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信