无限循环结群嵌入曲面

Anthony Conway, Mark Powell
{"title":"无限循环结群嵌入曲面","authors":"Anthony Conway, Mark Powell","doi":"10.2140/gt.2023.27.739","DOIUrl":null,"url":null,"abstract":"We study locally flat, compact, oriented surfaces in $4$-manifolds whose exteriors have infinite cyclic fundamental group. We give algebraic topological criteria for two such surfaces, with the same genus $g$, to be related by an ambient homeomorphism, and further criteria that imply they are ambiently isotopic. Along the way, we prove that certain pairs of topological $4$-manifolds with infinite cyclic fundamental group, homeomorphic boundaries, and equivalent equivariant intersection forms, are homeomorphic.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Embedded surfaces with infinite cyclic knot group\",\"authors\":\"Anthony Conway, Mark Powell\",\"doi\":\"10.2140/gt.2023.27.739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study locally flat, compact, oriented surfaces in $4$-manifolds whose exteriors have infinite cyclic fundamental group. We give algebraic topological criteria for two such surfaces, with the same genus $g$, to be related by an ambient homeomorphism, and further criteria that imply they are ambiently isotopic. Along the way, we prove that certain pairs of topological $4$-manifolds with infinite cyclic fundamental group, homeomorphic boundaries, and equivalent equivariant intersection forms, are homeomorphic.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2023.27.739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们研究了$4$-流形中具有无限循环基群的局部平坦、紧致、定向曲面。我们给出了具有相同格$g$的两个这样的曲面与环境同胚相关的代数拓扑判据,以及暗示它们是环境同位素的进一步判据。在此过程中,我们证明了具有无限循环基群、同胚边界和等价等变交形式的拓扑$4$流形对是同胚的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded surfaces with infinite cyclic knot group
We study locally flat, compact, oriented surfaces in $4$-manifolds whose exteriors have infinite cyclic fundamental group. We give algebraic topological criteria for two such surfaces, with the same genus $g$, to be related by an ambient homeomorphism, and further criteria that imply they are ambiently isotopic. Along the way, we prove that certain pairs of topological $4$-manifolds with infinite cyclic fundamental group, homeomorphic boundaries, and equivalent equivariant intersection forms, are homeomorphic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信