{"title":"Bi2O3-SiO2二元体系结晶动力学研究","authors":"Hongwei Guo","doi":"10.5772/INTECHOPEN.74177","DOIUrl":null,"url":null,"abstract":"The Bi2O3-SiO2 glasses were prepared by the melt cooling method. The non-isothermal crystallization kinetics and phase transformation kinetics of the BS glasses were analyzed by the Kissinger and Augis-Bennett equations by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results show that three main crystal phases, namely Bi12SiO20, Bi2SiO5, and Bi4Si3O12 are generated sequentially in the heat treatment process. The corresponding activation energy is 150.6, 474.9, and 340.3 kJ/mol. The average crystallization index is 2.5, 2.1, and 2.2. The crystal phases generated by volume nucleation grow in a one-dimensional pattern, and the metastable Bi2SiO5 can be transformed into Bi4Si3O12, which is in a more stable phase.","PeriodicalId":118101,"journal":{"name":"Advances in Glass Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Crystallization Kinetics of Bi2O3-SiO2 Binary System\",\"authors\":\"Hongwei Guo\",\"doi\":\"10.5772/INTECHOPEN.74177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bi2O3-SiO2 glasses were prepared by the melt cooling method. The non-isothermal crystallization kinetics and phase transformation kinetics of the BS glasses were analyzed by the Kissinger and Augis-Bennett equations by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results show that three main crystal phases, namely Bi12SiO20, Bi2SiO5, and Bi4Si3O12 are generated sequentially in the heat treatment process. The corresponding activation energy is 150.6, 474.9, and 340.3 kJ/mol. The average crystallization index is 2.5, 2.1, and 2.2. The crystal phases generated by volume nucleation grow in a one-dimensional pattern, and the metastable Bi2SiO5 can be transformed into Bi4Si3O12, which is in a more stable phase.\",\"PeriodicalId\":118101,\"journal\":{\"name\":\"Advances in Glass Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Glass Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.74177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Glass Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.74177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crystallization Kinetics of Bi2O3-SiO2 Binary System
The Bi2O3-SiO2 glasses were prepared by the melt cooling method. The non-isothermal crystallization kinetics and phase transformation kinetics of the BS glasses were analyzed by the Kissinger and Augis-Bennett equations by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results show that three main crystal phases, namely Bi12SiO20, Bi2SiO5, and Bi4Si3O12 are generated sequentially in the heat treatment process. The corresponding activation energy is 150.6, 474.9, and 340.3 kJ/mol. The average crystallization index is 2.5, 2.1, and 2.2. The crystal phases generated by volume nucleation grow in a one-dimensional pattern, and the metastable Bi2SiO5 can be transformed into Bi4Si3O12, which is in a more stable phase.