半监督深度模糊c均值聚类算法的实证研究

Ali Arshad, Muhammad Hassam, Saman Riaz, Shahaboddin Shamshirband
{"title":"半监督深度模糊c均值聚类算法的实证研究","authors":"Ali Arshad, Muhammad Hassam, Saman Riaz, Shahaboddin Shamshirband","doi":"10.1109/EUROCON52738.2021.9535541","DOIUrl":null,"url":null,"abstract":"Nowadays machine learning is most widely used in different applications to enhance the quality of system. In our study, we are going to propose an Empirical study of semi supervised Deep Fuzzy C-Mean clustering algorithm on different state-of-the-art pre-processing approach. However, the performance of the models depends on the quality of datasets. In this paper, we initially split our data into labeled and unlabeled data and simultaneously compare the feature between labeled and unlabeled data to extract the knowledge from unlabeled data. In second stage of feature selection and instance reduction, we apply Information Gain (IG) to conduct redundancy control and Random under sampling and Random over sampling to handle the imbalance problem. In our paper, we use the dataset (MNIST) to check the demonstration performance of our given approaches.","PeriodicalId":328338,"journal":{"name":"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical Study of Semi-Supervised Deep Fuzzy C-Mean Clustering Algorithm\",\"authors\":\"Ali Arshad, Muhammad Hassam, Saman Riaz, Shahaboddin Shamshirband\",\"doi\":\"10.1109/EUROCON52738.2021.9535541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays machine learning is most widely used in different applications to enhance the quality of system. In our study, we are going to propose an Empirical study of semi supervised Deep Fuzzy C-Mean clustering algorithm on different state-of-the-art pre-processing approach. However, the performance of the models depends on the quality of datasets. In this paper, we initially split our data into labeled and unlabeled data and simultaneously compare the feature between labeled and unlabeled data to extract the knowledge from unlabeled data. In second stage of feature selection and instance reduction, we apply Information Gain (IG) to conduct redundancy control and Random under sampling and Random over sampling to handle the imbalance problem. In our paper, we use the dataset (MNIST) to check the demonstration performance of our given approaches.\",\"PeriodicalId\":328338,\"journal\":{\"name\":\"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies\",\"volume\":\"291 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON52738.2021.9535541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON52738.2021.9535541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,机器学习被广泛应用于不同的应用中,以提高系统的质量。在我们的研究中,我们将在不同的最先进的预处理方法上对半监督深度模糊c均值聚类算法进行实证研究。然而,模型的性能取决于数据集的质量。在本文中,我们首先将数据分为有标记和未标记数据,同时比较有标记和未标记数据之间的特征,从未标记数据中提取知识。在第二阶段的特征选择和实例约简中,我们利用信息增益(Information Gain, IG)进行冗余控制,并利用随机下采样和随机上采样来处理不平衡问题。在我们的论文中,我们使用数据集(MNIST)来检查我们给定方法的演示性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical Study of Semi-Supervised Deep Fuzzy C-Mean Clustering Algorithm
Nowadays machine learning is most widely used in different applications to enhance the quality of system. In our study, we are going to propose an Empirical study of semi supervised Deep Fuzzy C-Mean clustering algorithm on different state-of-the-art pre-processing approach. However, the performance of the models depends on the quality of datasets. In this paper, we initially split our data into labeled and unlabeled data and simultaneously compare the feature between labeled and unlabeled data to extract the knowledge from unlabeled data. In second stage of feature selection and instance reduction, we apply Information Gain (IG) to conduct redundancy control and Random under sampling and Random over sampling to handle the imbalance problem. In our paper, we use the dataset (MNIST) to check the demonstration performance of our given approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信