基于模糊芯片的电源控制器实时故障分类器

Xing Wu, C. Wu
{"title":"基于模糊芯片的电源控制器实时故障分类器","authors":"Xing Wu, C. Wu","doi":"10.1109/FUZZY.1994.343920","DOIUrl":null,"url":null,"abstract":"A fuzzy chip-based electrical power faults classifier is presented in this paper. The system, which utilizes a fuzzy chip designed for the fuzzy rule base inference, detects the faults in the electrical power system in real time and activates the circuit control unit to take the appropriate actions. A set of features are extracted, and two sets of fuzzy inference rules are used to classify faults based on those features. The membership functions for all fuzzy variables are trained based on a supervised learning algorithm. Features extracted from structure properties of the patterns enable the classifier to rapidly detect the faults appearing in electrical power within 50 /spl mu/s. The fuzzy chip, in this fault classifier, provides speed and cost improvement over the existing general-purpose microprocessor technologies,.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fuzzy chip-based real-time fault classifier in a power controller\",\"authors\":\"Xing Wu, C. Wu\",\"doi\":\"10.1109/FUZZY.1994.343920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fuzzy chip-based electrical power faults classifier is presented in this paper. The system, which utilizes a fuzzy chip designed for the fuzzy rule base inference, detects the faults in the electrical power system in real time and activates the circuit control unit to take the appropriate actions. A set of features are extracted, and two sets of fuzzy inference rules are used to classify faults based on those features. The membership functions for all fuzzy variables are trained based on a supervised learning algorithm. Features extracted from structure properties of the patterns enable the classifier to rapidly detect the faults appearing in electrical power within 50 /spl mu/s. The fuzzy chip, in this fault classifier, provides speed and cost improvement over the existing general-purpose microprocessor technologies,.<<ETX>>\",\"PeriodicalId\":153967,\"journal\":{\"name\":\"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1994.343920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于模糊芯片的电力故障分类器。该系统采用基于模糊规则推理的模糊芯片,实时检测电力系统中的故障,并激活电路控制单元采取相应的动作。该方法提取一组特征,并根据这些特征使用两组模糊推理规则对故障进行分类。基于监督学习算法对所有模糊变量的隶属度函数进行训练。从模式的结构属性中提取特征,使分类器能够快速检测50 /spl mu/s范围内出现的电力故障。在这种故障分类器中,模糊芯片比现有的通用微处理器技术提供了速度和成本上的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fuzzy chip-based real-time fault classifier in a power controller
A fuzzy chip-based electrical power faults classifier is presented in this paper. The system, which utilizes a fuzzy chip designed for the fuzzy rule base inference, detects the faults in the electrical power system in real time and activates the circuit control unit to take the appropriate actions. A set of features are extracted, and two sets of fuzzy inference rules are used to classify faults based on those features. The membership functions for all fuzzy variables are trained based on a supervised learning algorithm. Features extracted from structure properties of the patterns enable the classifier to rapidly detect the faults appearing in electrical power within 50 /spl mu/s. The fuzzy chip, in this fault classifier, provides speed and cost improvement over the existing general-purpose microprocessor technologies,.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信