Prachi Agarwal, V. Rajanna, Toh Wei Da, Benjamin C. K. Tee, M. Alioto
{"title":"全数字自校准解码器,亚µW, 1.6fJ/convstep和0.0075mm2每个受体缩放到类似人类的触觉感应密度","authors":"Prachi Agarwal, V. Rajanna, Toh Wei Da, Benjamin C. K. Tee, M. Alioto","doi":"10.23919/VLSICircuits52068.2021.9492329","DOIUrl":null,"url":null,"abstract":"This work presents an area- and energy-efficient decoder for tactile e-skin sensing encoding to scale up receptor density to the human scale. A fully-digital signal-adaptive receptor interface and event decoder architecture are introduced, leveraging temporal/spatial tactile signal sparsity to dynamically reduce activity and time resolution at negligible accuracy degradation. A novel reference-less self-calibrating senseamp is introduced to cancel offset by exploiting the statistical balance of spread-spectrum tactile pulses and noise. The 40nm testchip shows 1.6-fJ/convstep energy (0.0075mm2 area) per receptor with 50X (5X) improvement over prior art, and 80-receptor e-skin aggregation on a single pad.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully-Digital Self-Calibrating Decoder with Sub-µW, 1.6fJ/convstep and 0.0075mm2 per Receptor for Scaling to Human-Like Tactile Sensing Density\",\"authors\":\"Prachi Agarwal, V. Rajanna, Toh Wei Da, Benjamin C. K. Tee, M. Alioto\",\"doi\":\"10.23919/VLSICircuits52068.2021.9492329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an area- and energy-efficient decoder for tactile e-skin sensing encoding to scale up receptor density to the human scale. A fully-digital signal-adaptive receptor interface and event decoder architecture are introduced, leveraging temporal/spatial tactile signal sparsity to dynamically reduce activity and time resolution at negligible accuracy degradation. A novel reference-less self-calibrating senseamp is introduced to cancel offset by exploiting the statistical balance of spread-spectrum tactile pulses and noise. The 40nm testchip shows 1.6-fJ/convstep energy (0.0075mm2 area) per receptor with 50X (5X) improvement over prior art, and 80-receptor e-skin aggregation on a single pad.\",\"PeriodicalId\":106356,\"journal\":{\"name\":\"2021 Symposium on VLSI Circuits\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSICircuits52068.2021.9492329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fully-Digital Self-Calibrating Decoder with Sub-µW, 1.6fJ/convstep and 0.0075mm2 per Receptor for Scaling to Human-Like Tactile Sensing Density
This work presents an area- and energy-efficient decoder for tactile e-skin sensing encoding to scale up receptor density to the human scale. A fully-digital signal-adaptive receptor interface and event decoder architecture are introduced, leveraging temporal/spatial tactile signal sparsity to dynamically reduce activity and time resolution at negligible accuracy degradation. A novel reference-less self-calibrating senseamp is introduced to cancel offset by exploiting the statistical balance of spread-spectrum tactile pulses and noise. The 40nm testchip shows 1.6-fJ/convstep energy (0.0075mm2 area) per receptor with 50X (5X) improvement over prior art, and 80-receptor e-skin aggregation on a single pad.