脑源性三维纳米光子-纳米电子神经形态计算

S. Yoo
{"title":"脑源性三维纳米光子-纳米电子神经形态计算","authors":"S. Yoo","doi":"10.1109/IPC53466.2022.9975516","DOIUrl":null,"url":null,"abstract":"We propose a brain-derived—rather than a brain-inspired—Neuromorphic Computing architecture for flexible learning intelligent systems capable of handling complex tasks in unpredictable environments. We will discuss 3D Nanophotonic-Nanoelectronic integrated circuits that can realize energy-efficient, high-throughput, and scalable realization of brain-derived Neuromorphic Computing.","PeriodicalId":202839,"journal":{"name":"2022 IEEE Photonics Conference (IPC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain-Derived 3D NanoPhotonic-NanoElectronic Neuromorphic Computing\",\"authors\":\"S. Yoo\",\"doi\":\"10.1109/IPC53466.2022.9975516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a brain-derived—rather than a brain-inspired—Neuromorphic Computing architecture for flexible learning intelligent systems capable of handling complex tasks in unpredictable environments. We will discuss 3D Nanophotonic-Nanoelectronic integrated circuits that can realize energy-efficient, high-throughput, and scalable realization of brain-derived Neuromorphic Computing.\",\"PeriodicalId\":202839,\"journal\":{\"name\":\"2022 IEEE Photonics Conference (IPC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Photonics Conference (IPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPC53466.2022.9975516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Photonics Conference (IPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPC53466.2022.9975516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种大脑衍生的——而不是大脑启发的——神经形态计算架构,用于能够在不可预测的环境中处理复杂任务的灵活学习智能系统。我们将讨论3D纳米光子-纳米电子集成电路,可以实现脑源性神经形态计算的节能,高通量和可扩展实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain-Derived 3D NanoPhotonic-NanoElectronic Neuromorphic Computing
We propose a brain-derived—rather than a brain-inspired—Neuromorphic Computing architecture for flexible learning intelligent systems capable of handling complex tasks in unpredictable environments. We will discuss 3D Nanophotonic-Nanoelectronic integrated circuits that can realize energy-efficient, high-throughput, and scalable realization of brain-derived Neuromorphic Computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信