基于位置的混合深度学习购买预测模型

B. Zhu, Weiqiang Tang, Xiai Mao, Wenchuan Yang
{"title":"基于位置的混合深度学习购买预测模型","authors":"B. Zhu, Weiqiang Tang, Xiai Mao, Wenchuan Yang","doi":"10.1109/ICCIA49625.2020.00038","DOIUrl":null,"url":null,"abstract":"Consumer purchase prediction is of great significance for reducing marketing costs and improving return on investment of companies. Recently, spatial-temporal data mining has aroused increasing concern. In this paper, we propose a hybrid deep learning model (EE-CNN) for purchase prediction, which combines entity embedding and convolutional neural networks. In empirical experiments, we first explore the purchase location pattern of different consumer groups on data sets from a retail company of China. After that, our proposed EE-CNN model is utilized to predict consumer purchase behavior. It turns out that location data can help improve the performance of purchase prediction models in general. Meanwhile, our proposed EE-CNN model outperforms baselines used in the experiments. Our research provides significant guidelines for the marketing decisions of enterprise marketers.","PeriodicalId":237536,"journal":{"name":"2020 5th International Conference on Computational Intelligence and Applications (ICCIA)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Location-based Hybrid Deep Learning Model for Purchase Prediction\",\"authors\":\"B. Zhu, Weiqiang Tang, Xiai Mao, Wenchuan Yang\",\"doi\":\"10.1109/ICCIA49625.2020.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consumer purchase prediction is of great significance for reducing marketing costs and improving return on investment of companies. Recently, spatial-temporal data mining has aroused increasing concern. In this paper, we propose a hybrid deep learning model (EE-CNN) for purchase prediction, which combines entity embedding and convolutional neural networks. In empirical experiments, we first explore the purchase location pattern of different consumer groups on data sets from a retail company of China. After that, our proposed EE-CNN model is utilized to predict consumer purchase behavior. It turns out that location data can help improve the performance of purchase prediction models in general. Meanwhile, our proposed EE-CNN model outperforms baselines used in the experiments. Our research provides significant guidelines for the marketing decisions of enterprise marketers.\",\"PeriodicalId\":237536,\"journal\":{\"name\":\"2020 5th International Conference on Computational Intelligence and Applications (ICCIA)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Computational Intelligence and Applications (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIA49625.2020.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIA49625.2020.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

消费者购买预测对于降低企业营销成本,提高企业投资回报率具有重要意义。近年来,时空数据挖掘越来越受到人们的关注。在本文中,我们提出了一种结合实体嵌入和卷积神经网络的购买预测混合深度学习模型(EE-CNN)。在实证实验中,我们首先在中国某零售公司的数据集上探讨了不同消费者群体的购买区位模式。然后,利用我们提出的EE-CNN模型来预测消费者的购买行为。结果表明,总体而言,位置数据有助于提高购买预测模型的性能。同时,我们提出的EE-CNN模型优于实验中使用的基线。我们的研究为企业营销人员的营销决策提供了重要的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Location-based Hybrid Deep Learning Model for Purchase Prediction
Consumer purchase prediction is of great significance for reducing marketing costs and improving return on investment of companies. Recently, spatial-temporal data mining has aroused increasing concern. In this paper, we propose a hybrid deep learning model (EE-CNN) for purchase prediction, which combines entity embedding and convolutional neural networks. In empirical experiments, we first explore the purchase location pattern of different consumer groups on data sets from a retail company of China. After that, our proposed EE-CNN model is utilized to predict consumer purchase behavior. It turns out that location data can help improve the performance of purchase prediction models in general. Meanwhile, our proposed EE-CNN model outperforms baselines used in the experiments. Our research provides significant guidelines for the marketing decisions of enterprise marketers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信