多生物特征模板保护-智能手机上布隆过滤器的二值化统计特征的安全性分析

Martin Stokkenes, Ramachandra Raghavendra, Morten K. Sigaard, K. Raja, M. Gomez-Barrero, C. Busch
{"title":"多生物特征模板保护-智能手机上布隆过滤器的二值化统计特征的安全性分析","authors":"Martin Stokkenes, Ramachandra Raghavendra, Morten K. Sigaard, K. Raja, M. Gomez-Barrero, C. Busch","doi":"10.1109/IPTA.2016.7820972","DOIUrl":null,"url":null,"abstract":"In recent years, we have seen huge growth of biometric systems incorporated in devices such as smartphones and security is one of the major concerns. In this work a multi-biometric template protected system is proposed, based on Bloom filers and binarized statistical image features (BSIF). Features are extracted from face and both periocular regions and templates protected using Bloom filters. Score level fusion is applied to increase recognition accuracy. The system is tested on a database, consisting of 94 subjects, of images collected with smart phones. A comparison between unprotected and protected templates in the system shows the feasibility of the template protection method with observed Genuine-Match-Rate (GMR) of 95.95% for unprotected templates and 91.61% at a False-Match-Rate (FMR) of 0.01%. Irreversibility and unlinkability of the system is analysed based on a recently published security evaluation framework.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Multi-biometric template protection — A security analysis of binarized statistical features for bloom filters on smartphones\",\"authors\":\"Martin Stokkenes, Ramachandra Raghavendra, Morten K. Sigaard, K. Raja, M. Gomez-Barrero, C. Busch\",\"doi\":\"10.1109/IPTA.2016.7820972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, we have seen huge growth of biometric systems incorporated in devices such as smartphones and security is one of the major concerns. In this work a multi-biometric template protected system is proposed, based on Bloom filers and binarized statistical image features (BSIF). Features are extracted from face and both periocular regions and templates protected using Bloom filters. Score level fusion is applied to increase recognition accuracy. The system is tested on a database, consisting of 94 subjects, of images collected with smart phones. A comparison between unprotected and protected templates in the system shows the feasibility of the template protection method with observed Genuine-Match-Rate (GMR) of 95.95% for unprotected templates and 91.61% at a False-Match-Rate (FMR) of 0.01%. Irreversibility and unlinkability of the system is analysed based on a recently published security evaluation framework.\",\"PeriodicalId\":123429,\"journal\":{\"name\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2016.7820972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

近年来,我们看到智能手机等设备中的生物识别系统大幅增长,安全性是主要问题之一。本文提出了一种基于布卢姆滤波和二值化统计图像特征(BSIF)的多生物特征模板保护系统。使用Bloom过滤器从人脸和眼周区域和模板中提取特征。采用分数级融合提高识别精度。该系统在一个由94名受试者组成的数据库上进行了测试,该数据库由智能手机收集的图像组成。通过对系统中未保护模板和受保护模板的比较,验证了该模板保护方法的可行性,未保护模板的真实匹配率(GMR)为95.95%,假匹配率(FMR)为0.01%时,该方法的真实匹配率为91.61%。基于最近发布的安全评估框架,分析了系统的不可逆性和不可链接性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-biometric template protection — A security analysis of binarized statistical features for bloom filters on smartphones
In recent years, we have seen huge growth of biometric systems incorporated in devices such as smartphones and security is one of the major concerns. In this work a multi-biometric template protected system is proposed, based on Bloom filers and binarized statistical image features (BSIF). Features are extracted from face and both periocular regions and templates protected using Bloom filters. Score level fusion is applied to increase recognition accuracy. The system is tested on a database, consisting of 94 subjects, of images collected with smart phones. A comparison between unprotected and protected templates in the system shows the feasibility of the template protection method with observed Genuine-Match-Rate (GMR) of 95.95% for unprotected templates and 91.61% at a False-Match-Rate (FMR) of 0.01%. Irreversibility and unlinkability of the system is analysed based on a recently published security evaluation framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信