深度估计中对应匹配相似度度量的组成

Hubert Żabiński, O. Stankiewicz
{"title":"深度估计中对应匹配相似度度量的组成","authors":"Hubert Żabiński, O. Stankiewicz","doi":"10.1109/spsympo51155.2020.9593880","DOIUrl":null,"url":null,"abstract":"Correspondence matching is a prerequisite step in dense depth estimation techniques. In this paper we consider various similarity metrics for correspondence matching and we present an approach which can be used to optimize it. Experimental results show that by careful selection of similarity metric can have positive impact on depth estimation quality and that the differences between various metrics range up to 60 percent points of bad-pixel depth map quality ratio. It has also been shown that usage of proposed composite similarity can lead to improved depth map quality, expressed as lower bad-pixel ratio.","PeriodicalId":380515,"journal":{"name":"2021 Signal Processing Symposium (SPSympo)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition of Similarity Metrics for Correspondence Matching in Depth Estimation\",\"authors\":\"Hubert Żabiński, O. Stankiewicz\",\"doi\":\"10.1109/spsympo51155.2020.9593880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correspondence matching is a prerequisite step in dense depth estimation techniques. In this paper we consider various similarity metrics for correspondence matching and we present an approach which can be used to optimize it. Experimental results show that by careful selection of similarity metric can have positive impact on depth estimation quality and that the differences between various metrics range up to 60 percent points of bad-pixel depth map quality ratio. It has also been shown that usage of proposed composite similarity can lead to improved depth map quality, expressed as lower bad-pixel ratio.\",\"PeriodicalId\":380515,\"journal\":{\"name\":\"2021 Signal Processing Symposium (SPSympo)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Signal Processing Symposium (SPSympo)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spsympo51155.2020.9593880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Signal Processing Symposium (SPSympo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spsympo51155.2020.9593880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对应匹配是密集深度估计技术的先决条件。在本文中,我们考虑了各种相似度度量的通信匹配,我们提出了一种方法,可以用来优化它。实验结果表明,仔细选择相似度度量可以对深度估计质量产生积极的影响,不同度量之间的差异可达坏像素深度图质量比的60%。研究还表明,使用所提出的复合相似度可以提高深度图质量,表现为较低的坏像素比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composition of Similarity Metrics for Correspondence Matching in Depth Estimation
Correspondence matching is a prerequisite step in dense depth estimation techniques. In this paper we consider various similarity metrics for correspondence matching and we present an approach which can be used to optimize it. Experimental results show that by careful selection of similarity metric can have positive impact on depth estimation quality and that the differences between various metrics range up to 60 percent points of bad-pixel depth map quality ratio. It has also been shown that usage of proposed composite similarity can lead to improved depth map quality, expressed as lower bad-pixel ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信