在原点附近局部定义的分数阶哈密顿系统的多重解

M. Timoumi
{"title":"在原点附近局部定义的分数阶哈密顿系统的多重解","authors":"M. Timoumi","doi":"10.7153/fdc-2020-10-12","DOIUrl":null,"url":null,"abstract":". In this article, we are interested in the existence of in fi nitely many solutions for a class of fractional Hamiltonian systems where L ( t ) is neither uniformly positive de fi nite nor coercive, and W ( t , x ) is locally de fi ned and subquadratic or superquadratic near the origin with respect to x . The proof is based on variational methods and critical point theory.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple solutions for fractional Hamiltonian systems locally defined near the origin\",\"authors\":\"M. Timoumi\",\"doi\":\"10.7153/fdc-2020-10-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this article, we are interested in the existence of in fi nitely many solutions for a class of fractional Hamiltonian systems where L ( t ) is neither uniformly positive de fi nite nor coercive, and W ( t , x ) is locally de fi ned and subquadratic or superquadratic near the origin with respect to x . The proof is based on variational methods and critical point theory.\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/fdc-2020-10-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2020-10-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。在本文中,我们对一类分数阶哈密顿系统的有限多解的存在性感兴趣,其中L (t)既不是一致定正的也不是强制的,并且W (t, x)是局部定的,并且在原点附近是次二次或超二次的。该证明是基于变分方法和临界点理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple solutions for fractional Hamiltonian systems locally defined near the origin
. In this article, we are interested in the existence of in fi nitely many solutions for a class of fractional Hamiltonian systems where L ( t ) is neither uniformly positive de fi nite nor coercive, and W ( t , x ) is locally de fi ned and subquadratic or superquadratic near the origin with respect to x . The proof is based on variational methods and critical point theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信