基于近似信念修正算法的大脑皮层识别模型

Yuuji Ichisugi
{"title":"基于近似信念修正算法的大脑皮层识别模型","authors":"Yuuji Ichisugi","doi":"10.1109/IJCNN.2011.6033247","DOIUrl":null,"url":null,"abstract":"We propose a computational model of recognition of the cerebral cortex, based on an approximate belief revision algorithm. The algorithm calculates the MPE (most probable explanation) of Bayesian networks with a linear-sum CPT (conditional probability table) model. Although the proposed algorithm is simple enough to be implemented by a fixed circuit, results of the performance evaluation show that this algorithm does not have bad approximation accuracy. The mean convergence time is not sensitive to the number of nodes if the depth the network is constant. The computation amount is linear to the number of nodes if the number of edges per node is constant. The proposed algorithm can be used as a part of a learning algorithm for a kind of sparse-coding, which reproduces orientation selectivity of the primary visual area. The circuit that executes the algorithm shows better correspondence to the anatomical structure of the cerebral cortex, namely its six-layer and columnar features, than the approximate belief propagation algorithm that has been proposed before. These results suggest that the proposed algorithm is a promising starting point for the model of the recognition mechanism of the cerebral cortex.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recognition model of cerebral cortex based on approximate belief revision algorithm\",\"authors\":\"Yuuji Ichisugi\",\"doi\":\"10.1109/IJCNN.2011.6033247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a computational model of recognition of the cerebral cortex, based on an approximate belief revision algorithm. The algorithm calculates the MPE (most probable explanation) of Bayesian networks with a linear-sum CPT (conditional probability table) model. Although the proposed algorithm is simple enough to be implemented by a fixed circuit, results of the performance evaluation show that this algorithm does not have bad approximation accuracy. The mean convergence time is not sensitive to the number of nodes if the depth the network is constant. The computation amount is linear to the number of nodes if the number of edges per node is constant. The proposed algorithm can be used as a part of a learning algorithm for a kind of sparse-coding, which reproduces orientation selectivity of the primary visual area. The circuit that executes the algorithm shows better correspondence to the anatomical structure of the cerebral cortex, namely its six-layer and columnar features, than the approximate belief propagation algorithm that has been proposed before. These results suggest that the proposed algorithm is a promising starting point for the model of the recognition mechanism of the cerebral cortex.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一种基于近似信念修正算法的大脑皮层识别计算模型。该算法采用线性和条件概率表模型计算贝叶斯网络的最可能解释(MPE)。虽然该算法简单,可以通过固定电路实现,但性能评估结果表明,该算法的逼近精度并不差。当网络深度一定时,平均收敛时间对节点数不敏感。如果每个节点的边数一定,则计算量与节点数成线性关系。该算法可以作为一种稀疏编码学习算法的一部分,用于再现主视觉区域的方向选择性。与之前提出的近似信念传播算法相比,执行该算法的电路更符合大脑皮层的解剖结构,即其六层和柱状特征。这些结果表明,该算法是建立大脑皮层识别机制模型的一个有希望的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition model of cerebral cortex based on approximate belief revision algorithm
We propose a computational model of recognition of the cerebral cortex, based on an approximate belief revision algorithm. The algorithm calculates the MPE (most probable explanation) of Bayesian networks with a linear-sum CPT (conditional probability table) model. Although the proposed algorithm is simple enough to be implemented by a fixed circuit, results of the performance evaluation show that this algorithm does not have bad approximation accuracy. The mean convergence time is not sensitive to the number of nodes if the depth the network is constant. The computation amount is linear to the number of nodes if the number of edges per node is constant. The proposed algorithm can be used as a part of a learning algorithm for a kind of sparse-coding, which reproduces orientation selectivity of the primary visual area. The circuit that executes the algorithm shows better correspondence to the anatomical structure of the cerebral cortex, namely its six-layer and columnar features, than the approximate belief propagation algorithm that has been proposed before. These results suggest that the proposed algorithm is a promising starting point for the model of the recognition mechanism of the cerebral cortex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信