注意快速启发式和最优启发式之间的差距

Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago Segarra, Himanshu Raj, Srikanth Kandula
{"title":"注意快速启发式和最优启发式之间的差距","authors":"Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago Segarra, Himanshu Raj, Srikanth Kandula","doi":"10.1145/3563766.3564102","DOIUrl":null,"url":null,"abstract":"Production systems use heuristics because they are faster or scale better than the corresponding optimal algorithms. Yet, practitioners are often unaware of how worse off a heuristic's solution may be with respect to the optimum in realistic scenarios. Leveraging two-stage games and convex optimization, we present a provable framework that unveils settings where a given heuristic underperforms.","PeriodicalId":339381,"journal":{"name":"Proceedings of the 21st ACM Workshop on Hot Topics in Networks","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Minding the gap between fast heuristics and their optimal counterparts\",\"authors\":\"Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago Segarra, Himanshu Raj, Srikanth Kandula\",\"doi\":\"10.1145/3563766.3564102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Production systems use heuristics because they are faster or scale better than the corresponding optimal algorithms. Yet, practitioners are often unaware of how worse off a heuristic's solution may be with respect to the optimum in realistic scenarios. Leveraging two-stage games and convex optimization, we present a provable framework that unveils settings where a given heuristic underperforms.\",\"PeriodicalId\":339381,\"journal\":{\"name\":\"Proceedings of the 21st ACM Workshop on Hot Topics in Networks\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM Workshop on Hot Topics in Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3563766.3564102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM Workshop on Hot Topics in Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3563766.3564102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

生产系统使用启发式,因为它们比相应的最优算法更快或可扩展性更好。然而,实践者通常没有意识到启发式解决方案相对于现实场景中的最优方案可能有多糟糕。利用两阶段博弈和凸优化,我们提出了一个可证明的框架,揭示了给定启发式表现不佳的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minding the gap between fast heuristics and their optimal counterparts
Production systems use heuristics because they are faster or scale better than the corresponding optimal algorithms. Yet, practitioners are often unaware of how worse off a heuristic's solution may be with respect to the optimum in realistic scenarios. Leveraging two-stage games and convex optimization, we present a provable framework that unveils settings where a given heuristic underperforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信