TLV-Bandit:收集与主题相关的本地tweet的土匪方法

Carina Miwa Yoshimura, H. Kitagawa
{"title":"TLV-Bandit:收集与主题相关的本地tweet的土匪方法","authors":"Carina Miwa Yoshimura, H. Kitagawa","doi":"10.1109/MIPR51284.2021.00016","DOIUrl":null,"url":null,"abstract":"Twitter hosts a large and diverse amount of information that makes up a corpus of data valuable to a wide range of institutions from marketing firms to governments. Collection of tweets can enable analysis like surveys of public opinions, marketing analysis or target analysis to users who live in a specific area. To collect useful data for a given task, the ability to capture tweets related to a specific topic sent from a specific area is needed. However, performing this kind of task on significantly sizable data sources such as the twitter stream data using just the Twitter API is a big challenge because of limitation relating to usage restrictions and lack of geotags. In this work, we propose \"TLV-Bandit\", which collects topic-related tweets sent from a specific area based on the bandit algorithm and analyze its performance. The experimental results show that our proposed method can collect efficiently the target tweets in comparison to other methods when considering the three aspects of collection requirements: Locality (sent from the target area), Similarity (topic-related) and Volume (number of tweets).","PeriodicalId":139543,"journal":{"name":"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TLV-Bandit: Bandit Method for Collecting Topic-related Local Tweets\",\"authors\":\"Carina Miwa Yoshimura, H. Kitagawa\",\"doi\":\"10.1109/MIPR51284.2021.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter hosts a large and diverse amount of information that makes up a corpus of data valuable to a wide range of institutions from marketing firms to governments. Collection of tweets can enable analysis like surveys of public opinions, marketing analysis or target analysis to users who live in a specific area. To collect useful data for a given task, the ability to capture tweets related to a specific topic sent from a specific area is needed. However, performing this kind of task on significantly sizable data sources such as the twitter stream data using just the Twitter API is a big challenge because of limitation relating to usage restrictions and lack of geotags. In this work, we propose \\\"TLV-Bandit\\\", which collects topic-related tweets sent from a specific area based on the bandit algorithm and analyze its performance. The experimental results show that our proposed method can collect efficiently the target tweets in comparison to other methods when considering the three aspects of collection requirements: Locality (sent from the target area), Similarity (topic-related) and Volume (number of tweets).\",\"PeriodicalId\":139543,\"journal\":{\"name\":\"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIPR51284.2021.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR51284.2021.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Twitter拥有大量不同种类的信息,这些信息构成了一个数据语料库,对从营销公司到政府的各种机构都有价值。收集推文可以进行民意调查、营销分析或针对特定地区用户的目标分析等分析。为了收集给定任务的有用数据,需要能够捕获从特定区域发送的与特定主题相关的tweet。然而,由于使用限制和缺乏地理标记的限制,仅使用twitter API在相当大的数据源(如twitter流数据)上执行这类任务是一个很大的挑战。在这项工作中,我们提出了“TLV-Bandit”,它基于bandit算法收集特定区域发出的与主题相关的推文,并分析其性能。实验结果表明,从局部性(从目标区域发送)、相似性(主题相关)和数量(推文数量)三个方面的收集要求出发,本文提出的方法比其他方法能够有效地收集目标推文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TLV-Bandit: Bandit Method for Collecting Topic-related Local Tweets
Twitter hosts a large and diverse amount of information that makes up a corpus of data valuable to a wide range of institutions from marketing firms to governments. Collection of tweets can enable analysis like surveys of public opinions, marketing analysis or target analysis to users who live in a specific area. To collect useful data for a given task, the ability to capture tweets related to a specific topic sent from a specific area is needed. However, performing this kind of task on significantly sizable data sources such as the twitter stream data using just the Twitter API is a big challenge because of limitation relating to usage restrictions and lack of geotags. In this work, we propose "TLV-Bandit", which collects topic-related tweets sent from a specific area based on the bandit algorithm and analyze its performance. The experimental results show that our proposed method can collect efficiently the target tweets in comparison to other methods when considering the three aspects of collection requirements: Locality (sent from the target area), Similarity (topic-related) and Volume (number of tweets).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信