Klein四对称对离散分支律的判据及其在E6(−14)上的应用

Haian He
{"title":"Klein四对称对离散分支律的判据及其在E6(−14)上的应用","authors":"Haian He","doi":"10.1142/s0129167x20500494","DOIUrl":null,"url":null,"abstract":"Let $G$ be a noncompact connected simple Lie group, and $(G,G^\\Gamma)$ a Klein four symmetric pair. In this paper, the author shows a necessary condition for the discrete decomposability of unitarizable simple $(\\mathfrak{g},K)$-modules for Klein for symmetric pairs. Precisely, if certain conditions hold for $(G,G^\\Gamma)$, there does not exist any unitarizable simple $(\\mathfrak{g},K)$-module that is discretely decomposable as a $(\\mathfrak{g}^\\Gamma,K^\\Gamma)$-module. As an application, for $G=\\mathrm{E}_{6(-14)}$, the author obtains a complete classification of Klein four symmetric pairs $(G,G^\\Gamma)$ with $G^\\Gamma$ noncompact, such that there exists at least one nontrivial unitarizable simple $(\\mathfrak{g},K)$-module that is discretely decomposable as a $(\\mathfrak{g}^\\Gamma,K^\\Gamma)$-module and is also discretely decomposable as a $(\\mathfrak{g}^\\sigma,K^\\sigma)$-module for some nonidentity element $\\sigma\\in\\Gamma$.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A criterion for discrete branching laws for Klein four symmetric pairs and its application to E6(−14)\",\"authors\":\"Haian He\",\"doi\":\"10.1142/s0129167x20500494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a noncompact connected simple Lie group, and $(G,G^\\\\Gamma)$ a Klein four symmetric pair. In this paper, the author shows a necessary condition for the discrete decomposability of unitarizable simple $(\\\\mathfrak{g},K)$-modules for Klein for symmetric pairs. Precisely, if certain conditions hold for $(G,G^\\\\Gamma)$, there does not exist any unitarizable simple $(\\\\mathfrak{g},K)$-module that is discretely decomposable as a $(\\\\mathfrak{g}^\\\\Gamma,K^\\\\Gamma)$-module. As an application, for $G=\\\\mathrm{E}_{6(-14)}$, the author obtains a complete classification of Klein four symmetric pairs $(G,G^\\\\Gamma)$ with $G^\\\\Gamma$ noncompact, such that there exists at least one nontrivial unitarizable simple $(\\\\mathfrak{g},K)$-module that is discretely decomposable as a $(\\\\mathfrak{g}^\\\\Gamma,K^\\\\Gamma)$-module and is also discretely decomposable as a $(\\\\mathfrak{g}^\\\\sigma,K^\\\\sigma)$-module for some nonidentity element $\\\\sigma\\\\in\\\\Gamma$.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x20500494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129167x20500494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设$G$为非紧连通单李群,$(G,G^\Gamma)$为克莱因四对称对。本文给出了Klein对称对的一元简单$(\mathfrak{g},K)$ -模的离散可分解性的一个必要条件。确切地说,如果$(G,G^\Gamma)$的某些条件成立,则不存在任何可以离散地分解为$(\mathfrak{g}^\Gamma,K^\Gamma)$模块的可统一的简单$(\mathfrak{g},K)$ -模块。作为应用,对于$G=\mathrm{E}_{6(-14)}$,作者得到了具有$G^\Gamma$非紧的Klein四对称对$(G,G^\Gamma)$的一个完全分类,使得存在至少一个可离散分解为$(\mathfrak{g}^\Gamma,K^\Gamma)$ -模的非平凡可一元简单$(\mathfrak{g},K)$ -模,并且对于某些非单位元$\sigma\in\Gamma$也可离散分解为$(\mathfrak{g}^\sigma,K^\sigma)$ -模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A criterion for discrete branching laws for Klein four symmetric pairs and its application to E6(−14)
Let $G$ be a noncompact connected simple Lie group, and $(G,G^\Gamma)$ a Klein four symmetric pair. In this paper, the author shows a necessary condition for the discrete decomposability of unitarizable simple $(\mathfrak{g},K)$-modules for Klein for symmetric pairs. Precisely, if certain conditions hold for $(G,G^\Gamma)$, there does not exist any unitarizable simple $(\mathfrak{g},K)$-module that is discretely decomposable as a $(\mathfrak{g}^\Gamma,K^\Gamma)$-module. As an application, for $G=\mathrm{E}_{6(-14)}$, the author obtains a complete classification of Klein four symmetric pairs $(G,G^\Gamma)$ with $G^\Gamma$ noncompact, such that there exists at least one nontrivial unitarizable simple $(\mathfrak{g},K)$-module that is discretely decomposable as a $(\mathfrak{g}^\Gamma,K^\Gamma)$-module and is also discretely decomposable as a $(\mathfrak{g}^\sigma,K^\sigma)$-module for some nonidentity element $\sigma\in\Gamma$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信