从活动监测中的加速度计数据连续输出周期性检测器

Gergo Sántha, G. Hermann
{"title":"从活动监测中的加速度计数据连续输出周期性检测器","authors":"Gergo Sántha, G. Hermann","doi":"10.1109/SISY.2014.6923570","DOIUrl":null,"url":null,"abstract":"Autocorrelation is a widely used statistical tool for determining periodicity and the fundamental period of a time-series. Calculating the autocorrelation function Rxx(k), we cross-correlate the signal with itself in order to detect non-randomness or to find repeating patterns. A continuous output, autocorrelation algorithm is proposed here which is able to detect periodicity in motor behaviour of free-roaming animals. The data stream is coming from a 3-axis accelerometer mounted on a collar.","PeriodicalId":277041,"journal":{"name":"2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Continuous output periodicity detector from accelerometer data in activity monitoring\",\"authors\":\"Gergo Sántha, G. Hermann\",\"doi\":\"10.1109/SISY.2014.6923570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autocorrelation is a widely used statistical tool for determining periodicity and the fundamental period of a time-series. Calculating the autocorrelation function Rxx(k), we cross-correlate the signal with itself in order to detect non-randomness or to find repeating patterns. A continuous output, autocorrelation algorithm is proposed here which is able to detect periodicity in motor behaviour of free-roaming animals. The data stream is coming from a 3-axis accelerometer mounted on a collar.\",\"PeriodicalId\":277041,\"journal\":{\"name\":\"2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISY.2014.6923570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2014.6923570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自相关是一种广泛使用的统计工具,用于确定时间序列的周期性和基本周期。计算自相关函数Rxx(k),我们将信号与自身交叉相关,以检测非随机性或发现重复模式。本文提出了一种能够检测自由漫游动物运动行为周期性的连续输出自相关算法。数据流来自安装在项圈上的3轴加速度计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous output periodicity detector from accelerometer data in activity monitoring
Autocorrelation is a widely used statistical tool for determining periodicity and the fundamental period of a time-series. Calculating the autocorrelation function Rxx(k), we cross-correlate the signal with itself in order to detect non-randomness or to find repeating patterns. A continuous output, autocorrelation algorithm is proposed here which is able to detect periodicity in motor behaviour of free-roaming animals. The data stream is coming from a 3-axis accelerometer mounted on a collar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信