通过维基媒体实现开放领域视觉和语言理解

David Semedo
{"title":"通过维基媒体实现开放领域视觉和语言理解","authors":"David Semedo","doi":"10.1145/3442442.3452346","DOIUrl":null,"url":null,"abstract":"Current state-of-the-art task-agnostic visio-linguistic approaches, such as ViLBERT [2], are limited to domains in which texts have a visual materialization (e.g. a person running). This work describes a project towards achieving the next generation of models, that can deal with open-domain media, and learn visio-linguistic representations that reflect data’s context, by jointly reasoning over media, a domain knowledge-graph and temporal context. This ambition will be leveraged by a Wikimedia data framework, comprised by comprehensive and high-quality data, covering a wide range of social, cultural, political and other type of events. Towards this goal, we propose a research setup comprised by an open-domain data framework and a set of novel independent research tasks.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Open-domain Vision and Language Understanding with Wikimedia\",\"authors\":\"David Semedo\",\"doi\":\"10.1145/3442442.3452346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current state-of-the-art task-agnostic visio-linguistic approaches, such as ViLBERT [2], are limited to domains in which texts have a visual materialization (e.g. a person running). This work describes a project towards achieving the next generation of models, that can deal with open-domain media, and learn visio-linguistic representations that reflect data’s context, by jointly reasoning over media, a domain knowledge-graph and temporal context. This ambition will be leveraged by a Wikimedia data framework, comprised by comprehensive and high-quality data, covering a wide range of social, cultural, political and other type of events. Towards this goal, we propose a research setup comprised by an open-domain data framework and a set of novel independent research tasks.\",\"PeriodicalId\":129420,\"journal\":{\"name\":\"Companion Proceedings of the Web Conference 2021\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442442.3452346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3452346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当前最先进的任务不可知论视觉语言学方法,如ViLBERT[2],仅限于文本具有视觉物化的领域(例如,跑步的人)。这项工作描述了一个实现下一代模型的项目,这些模型可以处理开放域媒体,并通过对媒体、领域知识图和时间上下文进行联合推理,学习反映数据上下文的视觉语言表示。这一雄心壮志将通过维基媒体数据框架来实现,该框架由全面和高质量的数据组成,涵盖了广泛的社会、文化、政治和其他类型的事件。为了实现这一目标,我们提出了一个由开放域数据框架和一组新颖的独立研究任务组成的研究设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Open-domain Vision and Language Understanding with Wikimedia
Current state-of-the-art task-agnostic visio-linguistic approaches, such as ViLBERT [2], are limited to domains in which texts have a visual materialization (e.g. a person running). This work describes a project towards achieving the next generation of models, that can deal with open-domain media, and learn visio-linguistic representations that reflect data’s context, by jointly reasoning over media, a domain knowledge-graph and temporal context. This ambition will be leveraged by a Wikimedia data framework, comprised by comprehensive and high-quality data, covering a wide range of social, cultural, political and other type of events. Towards this goal, we propose a research setup comprised by an open-domain data framework and a set of novel independent research tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信