Maninder Singh, Vaibhav Anu, G. Walia, Anurag Goswami
{"title":"通过引入错误类型级别粒度来验证需求评审:一种机器学习方法","authors":"Maninder Singh, Vaibhav Anu, G. Walia, Anurag Goswami","doi":"10.1145/3172871.3172880","DOIUrl":null,"url":null,"abstract":"Inspections are a proven approach for improving software requirements quality. Owing to the fact that inspectors report both faults and non-faults (i.e., false-positives) in their inspection reports, a major chunk of work falls on the person who is responsible for consolidating the reports received from multiple inspectors. We aim at automation of fault-consolidation step by using supervised machine learning algorithms that can effectively isolate faults from non-faults. Three different inspection studies were conducted in controlled environments to obtain real inspection data from inspectors belonging to both industry and from academic backgrounds. Next, we devised a methodology to separate faults from non-faults by first using ten individual classifiers from five different classification families to categorize different fault-types (e.g., omission, incorrectness, and inconsistencies). Based on the individual performance of classifiers for each fault-type, we created targeted ensembles that are suitable for identification of each fault-type. Our analysis showed that our selected ensemble classifiers were able to separate faults from non-faults with very high accuracy (as high as 85-89% for some fault-types), with a notable result being that in some cases, individual classifiers performed better than ensembles. In general, our approach can significantly reduce effort required to isolate faults from false-positives during the fault consolidation step of requirements inspections. Our approach also discusses the percentage possibility of correctly classifying each fault-type.","PeriodicalId":199550,"journal":{"name":"Proceedings of the 11th Innovations in Software Engineering Conference","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Validating Requirements Reviews by Introducing Fault-Type Level Granularity: A Machine Learning Approach\",\"authors\":\"Maninder Singh, Vaibhav Anu, G. Walia, Anurag Goswami\",\"doi\":\"10.1145/3172871.3172880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspections are a proven approach for improving software requirements quality. Owing to the fact that inspectors report both faults and non-faults (i.e., false-positives) in their inspection reports, a major chunk of work falls on the person who is responsible for consolidating the reports received from multiple inspectors. We aim at automation of fault-consolidation step by using supervised machine learning algorithms that can effectively isolate faults from non-faults. Three different inspection studies were conducted in controlled environments to obtain real inspection data from inspectors belonging to both industry and from academic backgrounds. Next, we devised a methodology to separate faults from non-faults by first using ten individual classifiers from five different classification families to categorize different fault-types (e.g., omission, incorrectness, and inconsistencies). Based on the individual performance of classifiers for each fault-type, we created targeted ensembles that are suitable for identification of each fault-type. Our analysis showed that our selected ensemble classifiers were able to separate faults from non-faults with very high accuracy (as high as 85-89% for some fault-types), with a notable result being that in some cases, individual classifiers performed better than ensembles. In general, our approach can significantly reduce effort required to isolate faults from false-positives during the fault consolidation step of requirements inspections. Our approach also discusses the percentage possibility of correctly classifying each fault-type.\",\"PeriodicalId\":199550,\"journal\":{\"name\":\"Proceedings of the 11th Innovations in Software Engineering Conference\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Innovations in Software Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3172871.3172880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Innovations in Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3172871.3172880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Validating Requirements Reviews by Introducing Fault-Type Level Granularity: A Machine Learning Approach
Inspections are a proven approach for improving software requirements quality. Owing to the fact that inspectors report both faults and non-faults (i.e., false-positives) in their inspection reports, a major chunk of work falls on the person who is responsible for consolidating the reports received from multiple inspectors. We aim at automation of fault-consolidation step by using supervised machine learning algorithms that can effectively isolate faults from non-faults. Three different inspection studies were conducted in controlled environments to obtain real inspection data from inspectors belonging to both industry and from academic backgrounds. Next, we devised a methodology to separate faults from non-faults by first using ten individual classifiers from five different classification families to categorize different fault-types (e.g., omission, incorrectness, and inconsistencies). Based on the individual performance of classifiers for each fault-type, we created targeted ensembles that are suitable for identification of each fault-type. Our analysis showed that our selected ensemble classifiers were able to separate faults from non-faults with very high accuracy (as high as 85-89% for some fault-types), with a notable result being that in some cases, individual classifiers performed better than ensembles. In general, our approach can significantly reduce effort required to isolate faults from false-positives during the fault consolidation step of requirements inspections. Our approach also discusses the percentage possibility of correctly classifying each fault-type.