利用并行技术提高证据组合的计算效率

X. Hong, K. Adamson, Weiru Liu
{"title":"利用并行技术提高证据组合的计算效率","authors":"X. Hong, K. Adamson, Weiru Liu","doi":"10.1109/TAI.1999.809766","DOIUrl":null,"url":null,"abstract":"This paper presents a method of partitioning a Markov tree of belief functions into clusters so as to efficiently implement parallel belief function propagations on the basis of the local computation technique. Our method initially represents computations of combining evidence on all nodes in a Markov tree as parallelism instances, then balances the computation load among these instances, and finally partitions them into clusters which can be mapped onto a set of processors in a PowerPC network. The advantage of our method is that the maximum parallelization can still be achieved, even with limited processor availability.","PeriodicalId":194023,"journal":{"name":"Proceedings 11th International Conference on Tools with Artificial Intelligence","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using parallel techniques to improve the computational efficiency of evidential combination\",\"authors\":\"X. Hong, K. Adamson, Weiru Liu\",\"doi\":\"10.1109/TAI.1999.809766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method of partitioning a Markov tree of belief functions into clusters so as to efficiently implement parallel belief function propagations on the basis of the local computation technique. Our method initially represents computations of combining evidence on all nodes in a Markov tree as parallelism instances, then balances the computation load among these instances, and finally partitions them into clusters which can be mapped onto a set of processors in a PowerPC network. The advantage of our method is that the maximum parallelization can still be achieved, even with limited processor availability.\",\"PeriodicalId\":194023,\"journal\":{\"name\":\"Proceedings 11th International Conference on Tools with Artificial Intelligence\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1999.809766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1999.809766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于局部计算技术的信念函数马尔可夫树的聚类划分方法,以有效地实现信念函数的并行传播。我们的方法最初表示将Markov树中所有节点上的证据组合为并行实例的计算,然后平衡这些实例之间的计算负载,最后将它们划分为集群,这些集群可以映射到PowerPC网络中的一组处理器上。我们的方法的优点是,即使处理器可用性有限,仍然可以实现最大的并行化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using parallel techniques to improve the computational efficiency of evidential combination
This paper presents a method of partitioning a Markov tree of belief functions into clusters so as to efficiently implement parallel belief function propagations on the basis of the local computation technique. Our method initially represents computations of combining evidence on all nodes in a Markov tree as parallelism instances, then balances the computation load among these instances, and finally partitions them into clusters which can be mapped onto a set of processors in a PowerPC network. The advantage of our method is that the maximum parallelization can still be achieved, even with limited processor availability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信