利用机器翻译为资源不足的语言提供资源——图像字幕任务

Basem H. A. Ahmed, Motaz K. Saad
{"title":"利用机器翻译为资源不足的语言提供资源——图像字幕任务","authors":"Basem H. A. Ahmed, Motaz K. Saad","doi":"10.1109/PICICT53635.2021.00017","DOIUrl":null,"url":null,"abstract":"Image captioning is an NLP task that has many applications such as image search and retrieval. This Task is a challenging task, and it needs a lot of data (image data and their text captions), which might not be available for some languages. In this work, we investigate the use of a machine translation system to provide resources for a low-resourced language (Arabic) for the imaging captioning task. We train a model on captions automatically translated using Google machine translation service. The performance is measured using the BLEU, ROUGE, CIDEr, METEOR metrics. We compare to English model's performance. We also evaluate the generated captions on manually translated captions. The results show that machine translation can be good enough for creating resources for low-resourced languages for the image captioning task and translating training data and building a new model is better than translating the model's output.","PeriodicalId":308869,"journal":{"name":"2021 Palestinian International Conference on Information and Communication Technology (PICICT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Machine Translation to Provide Resources for Under-Resourced Languages - Image Captioning Task\",\"authors\":\"Basem H. A. Ahmed, Motaz K. Saad\",\"doi\":\"10.1109/PICICT53635.2021.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image captioning is an NLP task that has many applications such as image search and retrieval. This Task is a challenging task, and it needs a lot of data (image data and their text captions), which might not be available for some languages. In this work, we investigate the use of a machine translation system to provide resources for a low-resourced language (Arabic) for the imaging captioning task. We train a model on captions automatically translated using Google machine translation service. The performance is measured using the BLEU, ROUGE, CIDEr, METEOR metrics. We compare to English model's performance. We also evaluate the generated captions on manually translated captions. The results show that machine translation can be good enough for creating resources for low-resourced languages for the image captioning task and translating training data and building a new model is better than translating the model's output.\",\"PeriodicalId\":308869,\"journal\":{\"name\":\"2021 Palestinian International Conference on Information and Communication Technology (PICICT)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Palestinian International Conference on Information and Communication Technology (PICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PICICT53635.2021.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Palestinian International Conference on Information and Communication Technology (PICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICICT53635.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像字幕是一项NLP任务,具有许多应用,如图像搜索和检索。这项任务是一项具有挑战性的任务,它需要大量的数据(图像数据及其文本标题),这些数据可能不适用于某些语言。在这项工作中,我们研究了使用机器翻译系统为低资源语言(阿拉伯语)提供图像字幕任务的资源。我们训练了一个使用谷歌机器翻译服务自动翻译的字幕模型。性能是使用BLEU、ROUGE、CIDEr、METEOR指标来衡量的。我们比较了英国模特的表现。我们还对人工翻译的字幕进行了评估。结果表明,机器翻译可以很好地为图像字幕任务的低资源语言创建资源,并且翻译训练数据和构建新模型比翻译模型的输出更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Use of Machine Translation to Provide Resources for Under-Resourced Languages - Image Captioning Task
Image captioning is an NLP task that has many applications such as image search and retrieval. This Task is a challenging task, and it needs a lot of data (image data and their text captions), which might not be available for some languages. In this work, we investigate the use of a machine translation system to provide resources for a low-resourced language (Arabic) for the imaging captioning task. We train a model on captions automatically translated using Google machine translation service. The performance is measured using the BLEU, ROUGE, CIDEr, METEOR metrics. We compare to English model's performance. We also evaluate the generated captions on manually translated captions. The results show that machine translation can be good enough for creating resources for low-resourced languages for the image captioning task and translating training data and building a new model is better than translating the model's output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信