具有优先附件和随机附件的网络的度分布和度相关性

Bing Ye, Zhizhong Yang
{"title":"具有优先附件和随机附件的网络的度分布和度相关性","authors":"Bing Ye, Zhizhong Yang","doi":"10.1109/FITME.2010.5654873","DOIUrl":null,"url":null,"abstract":"In this paper, the degree distribution and the two vertex degree correlations of the network with both preferential and random attachments are studied. Based on the concepts and techniques of Markov chain theory, a rigorous proof for the existence of the steady-state degree distribution is provided, and the exact analytic formula of the degree distribution and the scaling exponent are mathematically derived. By using the rate equation approach, we obtain an asymptotic expression for two vertex degree correlations.","PeriodicalId":421597,"journal":{"name":"2010 International Conference on Future Information Technology and Management Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The degree distribution and degree correlations of the network with both preferential and random attachments\",\"authors\":\"Bing Ye, Zhizhong Yang\",\"doi\":\"10.1109/FITME.2010.5654873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the degree distribution and the two vertex degree correlations of the network with both preferential and random attachments are studied. Based on the concepts and techniques of Markov chain theory, a rigorous proof for the existence of the steady-state degree distribution is provided, and the exact analytic formula of the degree distribution and the scaling exponent are mathematically derived. By using the rate equation approach, we obtain an asymptotic expression for two vertex degree correlations.\",\"PeriodicalId\":421597,\"journal\":{\"name\":\"2010 International Conference on Future Information Technology and Management Engineering\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Future Information Technology and Management Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FITME.2010.5654873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Future Information Technology and Management Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FITME.2010.5654873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有优先附件和随机附件的网络的度分布和两个顶点的度相关。基于马尔可夫链理论的概念和技术,给出了稳态度分布存在性的严格证明,并从数学上推导出了稳态度分布和标度指数的精确解析公式。利用速率方程方法,我们得到了两个顶点度相关的渐近表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The degree distribution and degree correlations of the network with both preferential and random attachments
In this paper, the degree distribution and the two vertex degree correlations of the network with both preferential and random attachments are studied. Based on the concepts and techniques of Markov chain theory, a rigorous proof for the existence of the steady-state degree distribution is provided, and the exact analytic formula of the degree distribution and the scaling exponent are mathematically derived. By using the rate equation approach, we obtain an asymptotic expression for two vertex degree correlations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信