由维格纳函数导出的实际相位分布

A. Bandilla, H. Ritze
{"title":"由维格纳函数导出的实际相位分布","authors":"A. Bandilla, H. Ritze","doi":"10.1088/0954-8998/5/4/002","DOIUrl":null,"url":null,"abstract":"The authors present the radius integrated Wigner function for a general pure state and discuss the coefficients of the different Fourier components. A fast converging expansion of these coefficients is given and its usefulness is shown for coherent light. Remarkable and measurable differences to the Pegg-Barnett formalism appear for weakly excited coherent states while for large excitations both dispersions agree in their leading terms. Large deviations are expected for specially designed two-photon coherent states.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Realistic phase distributions derived from the Wigner function\",\"authors\":\"A. Bandilla, H. Ritze\",\"doi\":\"10.1088/0954-8998/5/4/002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present the radius integrated Wigner function for a general pure state and discuss the coefficients of the different Fourier components. A fast converging expansion of these coefficients is given and its usefulness is shown for coherent light. Remarkable and measurable differences to the Pegg-Barnett formalism appear for weakly excited coherent states while for large excitations both dispersions agree in their leading terms. Large deviations are expected for specially designed two-photon coherent states.\",\"PeriodicalId\":130003,\"journal\":{\"name\":\"Quantum Optics: Journal of The European Optical Society Part B\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Optics: Journal of The European Optical Society Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0954-8998/5/4/002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Optics: Journal of The European Optical Society Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0954-8998/5/4/002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

给出了一般纯态的半径积分维格纳函数,并讨论了不同傅里叶分量的系数。给出了这些系数的一个快速收敛展开式,并证明了它对相干光的有用性。对于弱激发相干态,与peggy - barnett形式论有显著的、可测量的差异,而对于大激发相干态,两种色散在其主导项上是一致的。对于特别设计的双光子相干态,预计会有较大的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realistic phase distributions derived from the Wigner function
The authors present the radius integrated Wigner function for a general pure state and discuss the coefficients of the different Fourier components. A fast converging expansion of these coefficients is given and its usefulness is shown for coherent light. Remarkable and measurable differences to the Pegg-Barnett formalism appear for weakly excited coherent states while for large excitations both dispersions agree in their leading terms. Large deviations are expected for specially designed two-photon coherent states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信