具有Doo-Sabin细分曲面的局部细分过程

Zheng Xu, K. Kondo
{"title":"具有Doo-Sabin细分曲面的局部细分过程","authors":"Zheng Xu, K. Kondo","doi":"10.1109/SMI.2002.1003522","DOIUrl":null,"url":null,"abstract":"One problem in subdivision surfaces is that the number of meshes grows quickly after every subdivision step, and a surface with a huge number of meshes is difficult to manipulate. In this paper, an adaptive process for carrying out local subdivision with a Doo-Sabin recursive subdivision surface is presented. With this process, we can create Doo-Sabin surfaces that are more densely subdivided in areas of higher curvature or in special areas decided by users. The Doo-Sabin surfaces are constructed using fewer meshes compared to the original Doo-Sabin method.","PeriodicalId":267347,"journal":{"name":"Proceedings SMI. Shape Modeling International 2002","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Local subdivision process with Doo-Sabin subdivision surfaces\",\"authors\":\"Zheng Xu, K. Kondo\",\"doi\":\"10.1109/SMI.2002.1003522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One problem in subdivision surfaces is that the number of meshes grows quickly after every subdivision step, and a surface with a huge number of meshes is difficult to manipulate. In this paper, an adaptive process for carrying out local subdivision with a Doo-Sabin recursive subdivision surface is presented. With this process, we can create Doo-Sabin surfaces that are more densely subdivided in areas of higher curvature or in special areas decided by users. The Doo-Sabin surfaces are constructed using fewer meshes compared to the original Doo-Sabin method.\",\"PeriodicalId\":267347,\"journal\":{\"name\":\"Proceedings SMI. Shape Modeling International 2002\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings SMI. Shape Modeling International 2002\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMI.2002.1003522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings SMI. Shape Modeling International 2002","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2002.1003522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

细分曲面的一个问题是每一步细分后的网格数量增长很快,网格数量庞大的曲面难以操作。本文提出了一种利用Doo-Sabin递归细分曲面进行局部细分的自适应过程。通过这个过程,我们可以创建在更高曲率区域或用户决定的特殊区域中更密集细分的Doo-Sabin曲面。与原始的Doo-Sabin方法相比,Doo-Sabin曲面使用更少的网格构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local subdivision process with Doo-Sabin subdivision surfaces
One problem in subdivision surfaces is that the number of meshes grows quickly after every subdivision step, and a surface with a huge number of meshes is difficult to manipulate. In this paper, an adaptive process for carrying out local subdivision with a Doo-Sabin recursive subdivision surface is presented. With this process, we can create Doo-Sabin surfaces that are more densely subdivided in areas of higher curvature or in special areas decided by users. The Doo-Sabin surfaces are constructed using fewer meshes compared to the original Doo-Sabin method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信