H. Yonebayashi, Katsumo Takabayashi, Y. Miyagawa, Takumi Watanabe
{"title":"提高泡沫稳定性的CO2 EOR流动性控制技术","authors":"H. Yonebayashi, Katsumo Takabayashi, Y. Miyagawa, Takumi Watanabe","doi":"10.3997/2214-4609.201802982","DOIUrl":null,"url":null,"abstract":"ery and prevention of early breakthrough. From CCUS point of views, the delay of gas breakthrough has a significant advantage in underground storage of industry-originated CO2. The reviews highlighted that various types of nano-additives have been investigated to develop further advanced foam technology. Key points to be focused on are how achieving more robust foam stability. Even a conventional CO2 foam generated with surfactant agents might be deteriorated in short period, those additives can extend foam half-life time. As additives, the recent researches have paid attention to nano-particles, polymer, viscoelastic surfactant, etc. The investigation measured half-life, viscosity, and differential pressure in core flood as key performance indicators. In addition, “high temperature (HT)” and “high salinity (HS)” are keywords in their researches. Namely, screening criteria of experimental conditions are aiming to more harsh conditions. However, the reviewed reports have not covered up to our target conditions in typical Middle East region. Thus, we have been concentrating to develop nano-additive enhancing CO2 foam technology in HTHS.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Foam Stability Enhanced Technology For Mobility Control Of CO2 EOR\",\"authors\":\"H. Yonebayashi, Katsumo Takabayashi, Y. Miyagawa, Takumi Watanabe\",\"doi\":\"10.3997/2214-4609.201802982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ery and prevention of early breakthrough. From CCUS point of views, the delay of gas breakthrough has a significant advantage in underground storage of industry-originated CO2. The reviews highlighted that various types of nano-additives have been investigated to develop further advanced foam technology. Key points to be focused on are how achieving more robust foam stability. Even a conventional CO2 foam generated with surfactant agents might be deteriorated in short period, those additives can extend foam half-life time. As additives, the recent researches have paid attention to nano-particles, polymer, viscoelastic surfactant, etc. The investigation measured half-life, viscosity, and differential pressure in core flood as key performance indicators. In addition, “high temperature (HT)” and “high salinity (HS)” are keywords in their researches. Namely, screening criteria of experimental conditions are aiming to more harsh conditions. However, the reviewed reports have not covered up to our target conditions in typical Middle East region. Thus, we have been concentrating to develop nano-additive enhancing CO2 foam technology in HTHS.\",\"PeriodicalId\":254996,\"journal\":{\"name\":\"Fifth CO2 Geological Storage Workshop\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth CO2 Geological Storage Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201802982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth CO2 Geological Storage Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201802982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Foam Stability Enhanced Technology For Mobility Control Of CO2 EOR
ery and prevention of early breakthrough. From CCUS point of views, the delay of gas breakthrough has a significant advantage in underground storage of industry-originated CO2. The reviews highlighted that various types of nano-additives have been investigated to develop further advanced foam technology. Key points to be focused on are how achieving more robust foam stability. Even a conventional CO2 foam generated with surfactant agents might be deteriorated in short period, those additives can extend foam half-life time. As additives, the recent researches have paid attention to nano-particles, polymer, viscoelastic surfactant, etc. The investigation measured half-life, viscosity, and differential pressure in core flood as key performance indicators. In addition, “high temperature (HT)” and “high salinity (HS)” are keywords in their researches. Namely, screening criteria of experimental conditions are aiming to more harsh conditions. However, the reviewed reports have not covered up to our target conditions in typical Middle East region. Thus, we have been concentrating to develop nano-additive enhancing CO2 foam technology in HTHS.