使用惩罚互信息标准的卷积BSS

Mohammed El Rhabi, G. Gelle, H. Fenniri, G. Delaunay
{"title":"使用惩罚互信息标准的卷积BSS","authors":"Mohammed El Rhabi, G. Gelle, H. Fenniri, G. Delaunay","doi":"10.5281/ZENODO.38461","DOIUrl":null,"url":null,"abstract":"The Blind Separation problem of linear time dependent mixtures is addressed in this paper. We have developed a novel algorithm based on the minimization of the mutual information plus a penalized term which ensures an a priori normalization of the estimated sources (outputs). The criterion minimization is done using a well known gradient approach. Finally, some numerical results are presented to illustrate the performance of the penalized algorithm comparing to the Babaie-Zadeh approach presented in [4].","PeriodicalId":347658,"journal":{"name":"2004 12th European Signal Processing Conference","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutive BSS using a penalized mutual information criterion\",\"authors\":\"Mohammed El Rhabi, G. Gelle, H. Fenniri, G. Delaunay\",\"doi\":\"10.5281/ZENODO.38461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Blind Separation problem of linear time dependent mixtures is addressed in this paper. We have developed a novel algorithm based on the minimization of the mutual information plus a penalized term which ensures an a priori normalization of the estimated sources (outputs). The criterion minimization is done using a well known gradient approach. Finally, some numerical results are presented to illustrate the performance of the penalized algorithm comparing to the Babaie-Zadeh approach presented in [4].\",\"PeriodicalId\":347658,\"journal\":{\"name\":\"2004 12th European Signal Processing Conference\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 12th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.38461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 12th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.38461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了线性时变混合物的盲分离问题。我们开发了一种基于互信息最小化加上惩罚项的新算法,该算法确保了估计源(输出)的先验归一化。准则最小化是使用众所周知的梯度方法完成的。最后,给出了一些数值结果来说明惩罚算法与[4]中提出的babae - zadeh方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutive BSS using a penalized mutual information criterion
The Blind Separation problem of linear time dependent mixtures is addressed in this paper. We have developed a novel algorithm based on the minimization of the mutual information plus a penalized term which ensures an a priori normalization of the estimated sources (outputs). The criterion minimization is done using a well known gradient approach. Finally, some numerical results are presented to illustrate the performance of the penalized algorithm comparing to the Babaie-Zadeh approach presented in [4].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信