太阳能辐照下纳米材料收集氢能的研究

N. R. Khalid, M. F. Malik, H. Min, S. Abbasi
{"title":"太阳能辐照下纳米材料收集氢能的研究","authors":"N. R. Khalid, M. F. Malik, H. Min, S. Abbasi","doi":"10.2174/2452273203666190828212038","DOIUrl":null,"url":null,"abstract":"\n\nIn this review, the evolution of hydrogen in combined cell system of Photoelectrocatalytic and microbial fuel disused. Hydrogen is used as chemical fuel. Hydrogen is being produced through Photoelectrocatalytic method. The semiconductor material put into the water and irradiated with solar light after which the hydrogen produced by different steps and accumulated. Production of hydrogen also occur in microbial fuel cell system. These are electrochemical devices that initially used to treat the wastewater. But now this cell has entered into very interesting field of research which is Bioelectrochemical (BES). BES produces hydrogen using biomass as a catalyst using small consumption voltage rather than simple electrolysis of water. The first sections explain how hydrogen is produced individually by these two methods. And then we make comprehensive review on the evolution of hydrogen by combined microbial fuel and photoelectrocatalytic cell system, which is our main motive of writing this article. The continuous production of hydrogen by (PEC-MFC) hybrid device, using sunlight and splitting of water and electrohydrogenesis of microbial cell in fusion device (PEC-MFC) were also reported. This method gives continuous production of hydrogen using wastewater under solar light and also gives the treatment of wastewater. It is the clean energy source and also fulfills the today’s demand of energy. At last, a review on production of hydrogen by microbial photoelectrochemical system which is constructed by photocathode of semiconductor material and an anode of microbial. Production of hydrogen was continuously achieved without external voltage under ultraviolet irradiation.\n","PeriodicalId":294135,"journal":{"name":"Current Graphene Science","volume":"10 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen Energy Harvesting through nanomaterials under Solar Light Irradiation\",\"authors\":\"N. R. Khalid, M. F. Malik, H. Min, S. Abbasi\",\"doi\":\"10.2174/2452273203666190828212038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nIn this review, the evolution of hydrogen in combined cell system of Photoelectrocatalytic and microbial fuel disused. Hydrogen is used as chemical fuel. Hydrogen is being produced through Photoelectrocatalytic method. The semiconductor material put into the water and irradiated with solar light after which the hydrogen produced by different steps and accumulated. Production of hydrogen also occur in microbial fuel cell system. These are electrochemical devices that initially used to treat the wastewater. But now this cell has entered into very interesting field of research which is Bioelectrochemical (BES). BES produces hydrogen using biomass as a catalyst using small consumption voltage rather than simple electrolysis of water. The first sections explain how hydrogen is produced individually by these two methods. And then we make comprehensive review on the evolution of hydrogen by combined microbial fuel and photoelectrocatalytic cell system, which is our main motive of writing this article. The continuous production of hydrogen by (PEC-MFC) hybrid device, using sunlight and splitting of water and electrohydrogenesis of microbial cell in fusion device (PEC-MFC) were also reported. This method gives continuous production of hydrogen using wastewater under solar light and also gives the treatment of wastewater. It is the clean energy source and also fulfills the today’s demand of energy. At last, a review on production of hydrogen by microbial photoelectrochemical system which is constructed by photocathode of semiconductor material and an anode of microbial. Production of hydrogen was continuously achieved without external voltage under ultraviolet irradiation.\\n\",\"PeriodicalId\":294135,\"journal\":{\"name\":\"Current Graphene Science\",\"volume\":\"10 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Graphene Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2452273203666190828212038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Graphene Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2452273203666190828212038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了废弃的光电催化与微生物燃料组合电池系统中氢的演变。氢被用作化学燃料。利用光电催化法制备氢。将半导体材料放入水中,用太阳光照射,经过不同的步骤产生氢气并积累。氢气的产生也发生在微生物燃料电池系统中。这些是最初用来处理废水的电化学装置。但是现在这种细胞已经进入了一个非常有趣的研究领域——生物电化学(BES)。BES利用生物质作为催化剂,使用小的消耗电压而不是简单的电解水来生产氢气。第一部分解释了如何通过这两种方法分别产生氢。然后对微生物燃料与光电催化电池组合系统的氢气演化进行了全面的综述,这也是本文写作的主要动机。本文还报道了利用阳光和水的分裂以及微生物细胞在融合装置(PEC-MFC)中电制氢的混合装置(PEC-MFC)连续制氢。这种方法使废水在太阳能光照下连续生产氢气,并对废水进行处理。它是清洁能源,也满足了当今的能源需求。最后,对以半导体材料为光电阴极,以微生物为阳极构建的微生物光电化学制氢系统进行了综述。在紫外照射下,无外加电压连续制氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen Energy Harvesting through nanomaterials under Solar Light Irradiation
In this review, the evolution of hydrogen in combined cell system of Photoelectrocatalytic and microbial fuel disused. Hydrogen is used as chemical fuel. Hydrogen is being produced through Photoelectrocatalytic method. The semiconductor material put into the water and irradiated with solar light after which the hydrogen produced by different steps and accumulated. Production of hydrogen also occur in microbial fuel cell system. These are electrochemical devices that initially used to treat the wastewater. But now this cell has entered into very interesting field of research which is Bioelectrochemical (BES). BES produces hydrogen using biomass as a catalyst using small consumption voltage rather than simple electrolysis of water. The first sections explain how hydrogen is produced individually by these two methods. And then we make comprehensive review on the evolution of hydrogen by combined microbial fuel and photoelectrocatalytic cell system, which is our main motive of writing this article. The continuous production of hydrogen by (PEC-MFC) hybrid device, using sunlight and splitting of water and electrohydrogenesis of microbial cell in fusion device (PEC-MFC) were also reported. This method gives continuous production of hydrogen using wastewater under solar light and also gives the treatment of wastewater. It is the clean energy source and also fulfills the today’s demand of energy. At last, a review on production of hydrogen by microbial photoelectrochemical system which is constructed by photocathode of semiconductor material and an anode of microbial. Production of hydrogen was continuously achieved without external voltage under ultraviolet irradiation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信