概率匹配的次优性——一个形式证明、图形分析和脉冲平衡解释

Vittorio Larocca, L. Panaccione
{"title":"概率匹配的次优性——一个形式证明、图形分析和脉冲平衡解释","authors":"Vittorio Larocca, L. Panaccione","doi":"10.2139/ssrn.3618688","DOIUrl":null,"url":null,"abstract":"The objective of the paper is to study how the tax burden arising from an exogenWe prove suboptimality of probability matching in prediction tasks with an arbitrary (finite) number of outcomes and repetitions. For the popular case of binary prediction tasks, we also provide a graphical representation of the result. Finally, we relate probability matching to impulse balance equilibrium theory and show when probability matching is consistent with its predictions.","PeriodicalId":416571,"journal":{"name":"CEIS: Centre for Economic & International Studies Working Paper Series","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suboptimality of Probability Matching − a Formal Proof, a Graphical Analysis and an Impulse Balance Interpretation\",\"authors\":\"Vittorio Larocca, L. Panaccione\",\"doi\":\"10.2139/ssrn.3618688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of the paper is to study how the tax burden arising from an exogenWe prove suboptimality of probability matching in prediction tasks with an arbitrary (finite) number of outcomes and repetitions. For the popular case of binary prediction tasks, we also provide a graphical representation of the result. Finally, we relate probability matching to impulse balance equilibrium theory and show when probability matching is consistent with its predictions.\",\"PeriodicalId\":416571,\"journal\":{\"name\":\"CEIS: Centre for Economic & International Studies Working Paper Series\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEIS: Centre for Economic & International Studies Working Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3618688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEIS: Centre for Economic & International Studies Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3618688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究由外生因素引起的税收负担如何在具有任意(有限)数量的结果和重复的预测任务中证明概率匹配的次优性。对于二进制预测任务的常见情况,我们还提供了结果的图形表示。最后,我们将概率匹配与冲量平衡理论联系起来,并说明概率匹配在什么情况下与冲量平衡理论的预测相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suboptimality of Probability Matching − a Formal Proof, a Graphical Analysis and an Impulse Balance Interpretation
The objective of the paper is to study how the tax burden arising from an exogenWe prove suboptimality of probability matching in prediction tasks with an arbitrary (finite) number of outcomes and repetitions. For the popular case of binary prediction tasks, we also provide a graphical representation of the result. Finally, we relate probability matching to impulse balance equilibrium theory and show when probability matching is consistent with its predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信