基于指数混合模型的次优分布式数据融合

S. Julier, T. Bailey, J. Uhlmann
{"title":"基于指数混合模型的次优分布式数据融合","authors":"S. Julier, T. Bailey, J. Uhlmann","doi":"10.1109/NSSPW.2006.4378844","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the use of Exponential Mixture Densities (EMDs) as suboptimal update rules for distributed data fusion. We show that EMDs have a pointwise bound \"from below\" on the minimum value of the probability distribution. However, the distributions are not bounded from above and thus can be interpreted as a fusion operation.","PeriodicalId":388611,"journal":{"name":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Using Exponential Mixture Models for Suboptimal Distributed Data Fusion\",\"authors\":\"S. Julier, T. Bailey, J. Uhlmann\",\"doi\":\"10.1109/NSSPW.2006.4378844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the use of Exponential Mixture Densities (EMDs) as suboptimal update rules for distributed data fusion. We show that EMDs have a pointwise bound \\\"from below\\\" on the minimum value of the probability distribution. However, the distributions are not bounded from above and thus can be interpreted as a fusion operation.\",\"PeriodicalId\":388611,\"journal\":{\"name\":\"2006 IEEE Nonlinear Statistical Signal Processing Workshop\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Nonlinear Statistical Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSPW.2006.4378844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSPW.2006.4378844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

本文研究了指数混合密度(EMDs)作为分布式数据融合的次优更新规则。我们证明了emd在概率分布的最小值上有一个“从下”的逐点边界。然而,这些分布并不是有界的,因此可以解释为一个融合操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Exponential Mixture Models for Suboptimal Distributed Data Fusion
In this paper we investigate the use of Exponential Mixture Densities (EMDs) as suboptimal update rules for distributed data fusion. We show that EMDs have a pointwise bound "from below" on the minimum value of the probability distribution. However, the distributions are not bounded from above and thus can be interpreted as a fusion operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信