图像模态分类:基于置信度指标和接近度矩阵的后期融合方法

Xingzhi Sun, L. Gong, A. Natsev, Xiaofei Teng, Li-Ying Tian, Tao Wang, Yue Pan
{"title":"图像模态分类:基于置信度指标和接近度矩阵的后期融合方法","authors":"Xingzhi Sun, L. Gong, A. Natsev, Xiaofei Teng, Li-Ying Tian, Tao Wang, Yue Pan","doi":"10.1145/1991996.1992051","DOIUrl":null,"url":null,"abstract":"Automatic recognition or classification of medical image modality can provide valuable information for medical image retrieval and analysis. In this paper, we discuss an application of SVM ensemble classifiers to the problem, and explore a confidence indicator based late fusion method to resolve ambiguity across competing classes. Using a matrix of closeness and a set of additional fusion rules, the proposed method improves the classification performance by only subjecting likely misclassified samples to a text-based classifier followed by additional fusion of both image-based classification and text-based classification results. An empirical evaluation using standard ImageClef2010 Medical Retrieval data show very promising performance for the proposed approach.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Image modality classification: a late fusion method based on confidence indicator and closeness matrix\",\"authors\":\"Xingzhi Sun, L. Gong, A. Natsev, Xiaofei Teng, Li-Ying Tian, Tao Wang, Yue Pan\",\"doi\":\"10.1145/1991996.1992051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic recognition or classification of medical image modality can provide valuable information for medical image retrieval and analysis. In this paper, we discuss an application of SVM ensemble classifiers to the problem, and explore a confidence indicator based late fusion method to resolve ambiguity across competing classes. Using a matrix of closeness and a set of additional fusion rules, the proposed method improves the classification performance by only subjecting likely misclassified samples to a text-based classifier followed by additional fusion of both image-based classification and text-based classification results. An empirical evaluation using standard ImageClef2010 Medical Retrieval data show very promising performance for the proposed approach.\",\"PeriodicalId\":390933,\"journal\":{\"name\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1991996.1992051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

医学图像模态的自动识别或分类可以为医学图像的检索和分析提供有价值的信息。在本文中,我们讨论了SVM集成分类器在该问题中的应用,并探索了一种基于置信度指标的延迟融合方法来解决竞争类之间的歧义。该方法利用接近度矩阵和一组附加的融合规则,通过仅将可能被错误分类的样本置于基于文本的分类器中,然后将基于图像的分类结果和基于文本的分类结果进行额外的融合,从而提高了分类性能。使用标准ImageClef2010医学检索数据进行的实证评估表明,所提出的方法具有非常好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image modality classification: a late fusion method based on confidence indicator and closeness matrix
Automatic recognition or classification of medical image modality can provide valuable information for medical image retrieval and analysis. In this paper, we discuss an application of SVM ensemble classifiers to the problem, and explore a confidence indicator based late fusion method to resolve ambiguity across competing classes. Using a matrix of closeness and a set of additional fusion rules, the proposed method improves the classification performance by only subjecting likely misclassified samples to a text-based classifier followed by additional fusion of both image-based classification and text-based classification results. An empirical evaluation using standard ImageClef2010 Medical Retrieval data show very promising performance for the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信