基于水声图像的移动机器人定位测量模型

A. Burguera, G. Oliver, Yolanda González Cid
{"title":"基于水声图像的移动机器人定位测量模型","authors":"A. Burguera, G. Oliver, Yolanda González Cid","doi":"10.1109/ETFA.2010.5641294","DOIUrl":null,"url":null,"abstract":"Likelihood fields (LF) have been used in the past to perform localization. These approaches infer the LF from range data. However, an underwater Mechanically Scanned Imaging Sonar (MSIS) does not provide distances to the closest obstacles but echo intensity profiles. In this case, obtaining ranges involves processing the acoustic data. The proposal in this paper avoids the range extraction to build the LF. Instead of processing the acoustic images to obtain ranges and then using these ranges to infer a LF, this paper proposes the use of the acoustic image itself as a good approximation of the LF. The experimental results show the potential benefits of using this idea to define a measurement model to perform mobile robot localization.","PeriodicalId":201440,"journal":{"name":"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A measurement model for mobile robot localization using underwater acoustic images\",\"authors\":\"A. Burguera, G. Oliver, Yolanda González Cid\",\"doi\":\"10.1109/ETFA.2010.5641294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Likelihood fields (LF) have been used in the past to perform localization. These approaches infer the LF from range data. However, an underwater Mechanically Scanned Imaging Sonar (MSIS) does not provide distances to the closest obstacles but echo intensity profiles. In this case, obtaining ranges involves processing the acoustic data. The proposal in this paper avoids the range extraction to build the LF. Instead of processing the acoustic images to obtain ranges and then using these ranges to infer a LF, this paper proposes the use of the acoustic image itself as a good approximation of the LF. The experimental results show the potential benefits of using this idea to define a measurement model to perform mobile robot localization.\",\"PeriodicalId\":201440,\"journal\":{\"name\":\"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2010.5641294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2010.5641294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

似然域(LF)在过去被用于执行定位。这些方法从距离数据推断LF。然而,水下机械扫描成像声纳(MSIS)不能提供最近障碍物的距离,只能提供回波强度分布图。在这种情况下,获得距离需要处理声学数据。本文提出的方法避免了距离提取来构建LF。本文提出使用声图像本身作为LF的一个很好的近似,而不是处理声图像来获得范围,然后使用这些范围来推断LF。实验结果表明,使用该思想定义测量模型来执行移动机器人定位的潜在好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A measurement model for mobile robot localization using underwater acoustic images
Likelihood fields (LF) have been used in the past to perform localization. These approaches infer the LF from range data. However, an underwater Mechanically Scanned Imaging Sonar (MSIS) does not provide distances to the closest obstacles but echo intensity profiles. In this case, obtaining ranges involves processing the acoustic data. The proposal in this paper avoids the range extraction to build the LF. Instead of processing the acoustic images to obtain ranges and then using these ranges to infer a LF, this paper proposes the use of the acoustic image itself as a good approximation of the LF. The experimental results show the potential benefits of using this idea to define a measurement model to perform mobile robot localization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信