{"title":"脊椎动物Z带的两种结构状态","authors":"M.A. Goldstein , J.P. Schoeter , R.L. Sass","doi":"10.1016/0892-0354(90)90003-B","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrastructural analysis of the vertebrate Z band suggests that two reversible states of a single intricate lattice are essential for the contractile process. The two structural states of the Z band lattice (ss and bw) have been described in cross section in skeletal and cardiac muscle in different physiological states. The lattice responds to active tension but resists passive deformation. Changes in Z band form and dimension are correlated with cross-bridge binding. Two-dimensional image processing techniques show enhanced structural features that vary with the observed changes in lattice dimension. All projected images from all lattices show an approximate four-fold symmetry. Each image reveals differences in the appearance of axial filaments which enter from opposite sides of the Z band and cross-connecting filaments of similar curvature which appear to connect each axial filament to four nearest axial filaments. In the ss images, the apparent diameter of cross-cut axial filaments and the Z band interaxial filament spacing are smaller than in bw images. Cross-connecting filaments appear to overlap in the region half-way between axial filaments in ss images. We conclude that the Z band is an essential and dynamic part of the sarcomere, uniquely suited to transmit tension while maintaining dimensions appropriate for cross-bridge interaction.</p></div>","PeriodicalId":77112,"journal":{"name":"Electron microscopy reviews","volume":"3 2","pages":"Pages 227-248"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0892-0354(90)90003-B","citationCount":"28","resultStr":"{\"title\":\"Two structural states of the vertebrate Z band\",\"authors\":\"M.A. Goldstein , J.P. Schoeter , R.L. Sass\",\"doi\":\"10.1016/0892-0354(90)90003-B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultrastructural analysis of the vertebrate Z band suggests that two reversible states of a single intricate lattice are essential for the contractile process. The two structural states of the Z band lattice (ss and bw) have been described in cross section in skeletal and cardiac muscle in different physiological states. The lattice responds to active tension but resists passive deformation. Changes in Z band form and dimension are correlated with cross-bridge binding. Two-dimensional image processing techniques show enhanced structural features that vary with the observed changes in lattice dimension. All projected images from all lattices show an approximate four-fold symmetry. Each image reveals differences in the appearance of axial filaments which enter from opposite sides of the Z band and cross-connecting filaments of similar curvature which appear to connect each axial filament to four nearest axial filaments. In the ss images, the apparent diameter of cross-cut axial filaments and the Z band interaxial filament spacing are smaller than in bw images. Cross-connecting filaments appear to overlap in the region half-way between axial filaments in ss images. We conclude that the Z band is an essential and dynamic part of the sarcomere, uniquely suited to transmit tension while maintaining dimensions appropriate for cross-bridge interaction.</p></div>\",\"PeriodicalId\":77112,\"journal\":{\"name\":\"Electron microscopy reviews\",\"volume\":\"3 2\",\"pages\":\"Pages 227-248\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0892-0354(90)90003-B\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron microscopy reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/089203549090003B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron microscopy reviews","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/089203549090003B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrastructural analysis of the vertebrate Z band suggests that two reversible states of a single intricate lattice are essential for the contractile process. The two structural states of the Z band lattice (ss and bw) have been described in cross section in skeletal and cardiac muscle in different physiological states. The lattice responds to active tension but resists passive deformation. Changes in Z band form and dimension are correlated with cross-bridge binding. Two-dimensional image processing techniques show enhanced structural features that vary with the observed changes in lattice dimension. All projected images from all lattices show an approximate four-fold symmetry. Each image reveals differences in the appearance of axial filaments which enter from opposite sides of the Z band and cross-connecting filaments of similar curvature which appear to connect each axial filament to four nearest axial filaments. In the ss images, the apparent diameter of cross-cut axial filaments and the Z band interaxial filament spacing are smaller than in bw images. Cross-connecting filaments appear to overlap in the region half-way between axial filaments in ss images. We conclude that the Z band is an essential and dynamic part of the sarcomere, uniquely suited to transmit tension while maintaining dimensions appropriate for cross-bridge interaction.