辛分辨率下字符变化的P=W猜想

Camilla Felisetti, Mirko Mauri
{"title":"辛分辨率下字符变化的P=W猜想","authors":"Camilla Felisetti, Mirko Mauri","doi":"10.5802/jep.196","DOIUrl":null,"url":null,"abstract":"We establish P=W and PI=WI conjectures for character varieties with structural group $\\mathrm{GL}_n$ and $\\mathrm{SL}_n$ which admit a symplectic resolution, i.e. for genus 1 and arbitrary rank, and genus 2 and rank 2. We formulate the P=W conjecture for resolution, and prove it for symplectic resolutions. We exploit the topology of birational and quasi-etale modifications of Dolbeault moduli spaces of Higgs bundles. To this end, we prove auxiliary results of independent interest, like the construction of a relative compactification of the Hodge moduli space for reductive algebraic groups, or the intersection theory of some singular Lagrangian cycles. In particular, we study in detail a Dolbeault moduli space which is specialization of the singular irreducible holomorphic symplectic variety of type O'Grady 6.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"550 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"P=W conjectures for character varieties with symplectic resolution\",\"authors\":\"Camilla Felisetti, Mirko Mauri\",\"doi\":\"10.5802/jep.196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish P=W and PI=WI conjectures for character varieties with structural group $\\\\mathrm{GL}_n$ and $\\\\mathrm{SL}_n$ which admit a symplectic resolution, i.e. for genus 1 and arbitrary rank, and genus 2 and rank 2. We formulate the P=W conjecture for resolution, and prove it for symplectic resolutions. We exploit the topology of birational and quasi-etale modifications of Dolbeault moduli spaces of Higgs bundles. To this end, we prove auxiliary results of independent interest, like the construction of a relative compactification of the Hodge moduli space for reductive algebraic groups, or the intersection theory of some singular Lagrangian cycles. In particular, we study in detail a Dolbeault moduli space which is specialization of the singular irreducible holomorphic symplectic variety of type O'Grady 6.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"550 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

对于结构群$\mathrm{GL}_n$和$\mathrm{SL}_n$的字符变体,即对于属1和任意秩,以及属2和秩2,我们建立了P=W和PI=WI猜想。我们给出了分辨率的P=W猜想,并证明了辛分辨率的P=W猜想。研究了希格斯束Dolbeault模空间的双态和拟态修正的拓扑结构。为此,我们证明了一些独立有趣的辅助结果,如约化代数群的Hodge模空间的相对紧化的构造,或一些奇异拉格朗日环的交点理论。特别地,我们详细地研究了O'Grady 6型的奇异不可约全纯辛变的专门化的Dolbeault模空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
P=W conjectures for character varieties with symplectic resolution
We establish P=W and PI=WI conjectures for character varieties with structural group $\mathrm{GL}_n$ and $\mathrm{SL}_n$ which admit a symplectic resolution, i.e. for genus 1 and arbitrary rank, and genus 2 and rank 2. We formulate the P=W conjecture for resolution, and prove it for symplectic resolutions. We exploit the topology of birational and quasi-etale modifications of Dolbeault moduli spaces of Higgs bundles. To this end, we prove auxiliary results of independent interest, like the construction of a relative compactification of the Hodge moduli space for reductive algebraic groups, or the intersection theory of some singular Lagrangian cycles. In particular, we study in detail a Dolbeault moduli space which is specialization of the singular irreducible holomorphic symplectic variety of type O'Grady 6.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信