{"title":"辛分辨率下字符变化的P=W猜想","authors":"Camilla Felisetti, Mirko Mauri","doi":"10.5802/jep.196","DOIUrl":null,"url":null,"abstract":"We establish P=W and PI=WI conjectures for character varieties with structural group $\\mathrm{GL}_n$ and $\\mathrm{SL}_n$ which admit a symplectic resolution, i.e. for genus 1 and arbitrary rank, and genus 2 and rank 2. We formulate the P=W conjecture for resolution, and prove it for symplectic resolutions. We exploit the topology of birational and quasi-etale modifications of Dolbeault moduli spaces of Higgs bundles. To this end, we prove auxiliary results of independent interest, like the construction of a relative compactification of the Hodge moduli space for reductive algebraic groups, or the intersection theory of some singular Lagrangian cycles. In particular, we study in detail a Dolbeault moduli space which is specialization of the singular irreducible holomorphic symplectic variety of type O'Grady 6.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"550 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"P=W conjectures for character varieties with symplectic resolution\",\"authors\":\"Camilla Felisetti, Mirko Mauri\",\"doi\":\"10.5802/jep.196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish P=W and PI=WI conjectures for character varieties with structural group $\\\\mathrm{GL}_n$ and $\\\\mathrm{SL}_n$ which admit a symplectic resolution, i.e. for genus 1 and arbitrary rank, and genus 2 and rank 2. We formulate the P=W conjecture for resolution, and prove it for symplectic resolutions. We exploit the topology of birational and quasi-etale modifications of Dolbeault moduli spaces of Higgs bundles. To this end, we prove auxiliary results of independent interest, like the construction of a relative compactification of the Hodge moduli space for reductive algebraic groups, or the intersection theory of some singular Lagrangian cycles. In particular, we study in detail a Dolbeault moduli space which is specialization of the singular irreducible holomorphic symplectic variety of type O'Grady 6.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"550 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
P=W conjectures for character varieties with symplectic resolution
We establish P=W and PI=WI conjectures for character varieties with structural group $\mathrm{GL}_n$ and $\mathrm{SL}_n$ which admit a symplectic resolution, i.e. for genus 1 and arbitrary rank, and genus 2 and rank 2. We formulate the P=W conjecture for resolution, and prove it for symplectic resolutions. We exploit the topology of birational and quasi-etale modifications of Dolbeault moduli spaces of Higgs bundles. To this end, we prove auxiliary results of independent interest, like the construction of a relative compactification of the Hodge moduli space for reductive algebraic groups, or the intersection theory of some singular Lagrangian cycles. In particular, we study in detail a Dolbeault moduli space which is specialization of the singular irreducible holomorphic symplectic variety of type O'Grady 6.