基于参考的大型数据集离群点检测方法

Yaling Pei, Osmar R Zaiane, Yong Gao
{"title":"基于参考的大型数据集离群点检测方法","authors":"Yaling Pei, Osmar R Zaiane, Yong Gao","doi":"10.1109/ICDM.2006.17","DOIUrl":null,"url":null,"abstract":"A bottleneck to detecting distance and density based outliers is that a nearest-neighbor search is required for each of the data points, resulting in a quadratic number of pairwise distance evaluations. In this paper, we propose a new method that uses the relative degree of density with respect to a fixed set of reference points to approximate the degree of density defined in terms of nearest neighbors of a data point. The running time of our algorithm based on this approximation is 0(Rn log n) where n is the size of dataset and R is the number of reference points. Candidate outliers are ranked based on the outlier score assigned to each data point. Theoretical analysis and empirical studies show that our method is effective, efficient, and highly scalable to very large datasets.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"An Efficient Reference-Based Approach to Outlier Detection in Large Datasets\",\"authors\":\"Yaling Pei, Osmar R Zaiane, Yong Gao\",\"doi\":\"10.1109/ICDM.2006.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bottleneck to detecting distance and density based outliers is that a nearest-neighbor search is required for each of the data points, resulting in a quadratic number of pairwise distance evaluations. In this paper, we propose a new method that uses the relative degree of density with respect to a fixed set of reference points to approximate the degree of density defined in terms of nearest neighbors of a data point. The running time of our algorithm based on this approximation is 0(Rn log n) where n is the size of dataset and R is the number of reference points. Candidate outliers are ranked based on the outlier score assigned to each data point. Theoretical analysis and empirical studies show that our method is effective, efficient, and highly scalable to very large datasets.\",\"PeriodicalId\":356443,\"journal\":{\"name\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2006.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

检测基于距离和密度的离群值的瓶颈是需要对每个数据点进行最近邻搜索,导致成对距离评估的次数为二次。在本文中,我们提出了一种新的方法,使用相对于一组固定参考点的密度度来近似密度度,密度度是根据数据点的最近邻来定义的。基于这个近似的算法的运行时间是0(Rn log n),其中n是数据集的大小,R是参考点的数量。候选离群值根据分配给每个数据点的离群值评分进行排名。理论分析和实证研究表明,我们的方法是有效的、高效的,并且对非常大的数据集具有很高的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Reference-Based Approach to Outlier Detection in Large Datasets
A bottleneck to detecting distance and density based outliers is that a nearest-neighbor search is required for each of the data points, resulting in a quadratic number of pairwise distance evaluations. In this paper, we propose a new method that uses the relative degree of density with respect to a fixed set of reference points to approximate the degree of density defined in terms of nearest neighbors of a data point. The running time of our algorithm based on this approximation is 0(Rn log n) where n is the size of dataset and R is the number of reference points. Candidate outliers are ranked based on the outlier score assigned to each data point. Theoretical analysis and empirical studies show that our method is effective, efficient, and highly scalable to very large datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信