{"title":"话语关系标签分类的指令微调与精细化文本生成","authors":"Kaveri Anuranjana","doi":"10.18653/v1/2023.disrpt-1.2","DOIUrl":null,"url":null,"abstract":"This paper introduces DiscoFlan, a multilingual discourse relation classifier submitted for DISRPT 2023. Our submission represents the first attempt at building a multilingual discourse relation classifier for the DISRPT 2023 shared task. By our model addresses the issue to mismatches caused by hallucination in a seq2seq model by utilizing the label distribution information for label generation. In contrast to the previous state-of-the-art model, our approach eliminates the need for hand-crafted features in computing the discourse relation classes. Furthermore, we propose a novel label generation mechanism that anchors the labels to a fixed set by selectively enhancing training on the decoder model. Our experimental results demonstrate that our model surpasses the current state-of-the-art performance in 11 out of the 26 datasets considered, however the submitted model compatible with provided evaluation scripts is better in 7 out of 26 considered datasets, while demonstrating competitive results in the rest. Overall, DiscoFlan showcases promising advancements in multilingual discourse relation classification for the DISRPT 2023 shared task.","PeriodicalId":107248,"journal":{"name":"Proceedings of the 3rd Shared Task on Discourse Relation Parsing and Treebanking (DISRPT 2023)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DiscoFlan: Instruction Fine-tuning and Refined Text Generation for Discourse Relation Label Classification\",\"authors\":\"Kaveri Anuranjana\",\"doi\":\"10.18653/v1/2023.disrpt-1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces DiscoFlan, a multilingual discourse relation classifier submitted for DISRPT 2023. Our submission represents the first attempt at building a multilingual discourse relation classifier for the DISRPT 2023 shared task. By our model addresses the issue to mismatches caused by hallucination in a seq2seq model by utilizing the label distribution information for label generation. In contrast to the previous state-of-the-art model, our approach eliminates the need for hand-crafted features in computing the discourse relation classes. Furthermore, we propose a novel label generation mechanism that anchors the labels to a fixed set by selectively enhancing training on the decoder model. Our experimental results demonstrate that our model surpasses the current state-of-the-art performance in 11 out of the 26 datasets considered, however the submitted model compatible with provided evaluation scripts is better in 7 out of 26 considered datasets, while demonstrating competitive results in the rest. Overall, DiscoFlan showcases promising advancements in multilingual discourse relation classification for the DISRPT 2023 shared task.\",\"PeriodicalId\":107248,\"journal\":{\"name\":\"Proceedings of the 3rd Shared Task on Discourse Relation Parsing and Treebanking (DISRPT 2023)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd Shared Task on Discourse Relation Parsing and Treebanking (DISRPT 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2023.disrpt-1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Shared Task on Discourse Relation Parsing and Treebanking (DISRPT 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.disrpt-1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DiscoFlan: Instruction Fine-tuning and Refined Text Generation for Discourse Relation Label Classification
This paper introduces DiscoFlan, a multilingual discourse relation classifier submitted for DISRPT 2023. Our submission represents the first attempt at building a multilingual discourse relation classifier for the DISRPT 2023 shared task. By our model addresses the issue to mismatches caused by hallucination in a seq2seq model by utilizing the label distribution information for label generation. In contrast to the previous state-of-the-art model, our approach eliminates the need for hand-crafted features in computing the discourse relation classes. Furthermore, we propose a novel label generation mechanism that anchors the labels to a fixed set by selectively enhancing training on the decoder model. Our experimental results demonstrate that our model surpasses the current state-of-the-art performance in 11 out of the 26 datasets considered, however the submitted model compatible with provided evaluation scripts is better in 7 out of 26 considered datasets, while demonstrating competitive results in the rest. Overall, DiscoFlan showcases promising advancements in multilingual discourse relation classification for the DISRPT 2023 shared task.