涡流防抱死制动系统自适应滑模控制器设计

Abel Chernet, Gebremicheal Teame
{"title":"涡流防抱死制动系统自适应滑模控制器设计","authors":"Abel Chernet, Gebremicheal Teame","doi":"10.1504/ijndc.2021.117087","DOIUrl":null,"url":null,"abstract":"When vehicle speed increases, stable and powerful brake system is required to ensure the safety of the vehicle and passengers. For high speed braking of vehicle, contactless eddy current brake (ECB) is developed and applied to antilock brake system (ABS). An adaptive sliding mode controller for ABS using eddy current is presented with a sliding mode observer (SMO). Using vehicle acceleration, wheel speeds, and braking torque, the vehicle velocity estimated by SMO. To control the system based on wheel slip, half-car model is developed by considering uncertainty of the road slope and aerodynamic drag force. According to the controller, the vehicle ABS model is built with MATLAB Simulink. The response of controller is compared in terms of braking time and stopping distance. The results indicate proposed controller algorithm achieves minimum braking time and minimum stopping distance on selected roads.","PeriodicalId":249374,"journal":{"name":"International Journal of Nonlinear Dynamics and Control","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of adaptive sliding mode controller for ant-lock braking system using eddy current\",\"authors\":\"Abel Chernet, Gebremicheal Teame\",\"doi\":\"10.1504/ijndc.2021.117087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When vehicle speed increases, stable and powerful brake system is required to ensure the safety of the vehicle and passengers. For high speed braking of vehicle, contactless eddy current brake (ECB) is developed and applied to antilock brake system (ABS). An adaptive sliding mode controller for ABS using eddy current is presented with a sliding mode observer (SMO). Using vehicle acceleration, wheel speeds, and braking torque, the vehicle velocity estimated by SMO. To control the system based on wheel slip, half-car model is developed by considering uncertainty of the road slope and aerodynamic drag force. According to the controller, the vehicle ABS model is built with MATLAB Simulink. The response of controller is compared in terms of braking time and stopping distance. The results indicate proposed controller algorithm achieves minimum braking time and minimum stopping distance on selected roads.\",\"PeriodicalId\":249374,\"journal\":{\"name\":\"International Journal of Nonlinear Dynamics and Control\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Dynamics and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijndc.2021.117087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Dynamics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijndc.2021.117087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当车速增加时,需要稳定有力的制动系统来保证车辆和乘客的安全。针对车辆高速制动的需要,研制了无触点涡流制动器(ECB),并将其应用于防抱死制动系统(ABS)。采用滑模观测器(SMO),提出了一种基于涡流的ABS自适应滑模控制器。利用车辆加速度、车轮速度和制动扭矩,由SMO估计出车辆速度。为了控制基于轮滑的系统,考虑了路面坡度和气动阻力的不确定性,建立了半车模型。根据该控制器,利用MATLAB Simulink建立了汽车ABS模型。从制动时间和停车距离两方面比较了控制器的响应。结果表明,所提出的控制算法在选定道路上实现了最小制动时间和最小停车距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of adaptive sliding mode controller for ant-lock braking system using eddy current
When vehicle speed increases, stable and powerful brake system is required to ensure the safety of the vehicle and passengers. For high speed braking of vehicle, contactless eddy current brake (ECB) is developed and applied to antilock brake system (ABS). An adaptive sliding mode controller for ABS using eddy current is presented with a sliding mode observer (SMO). Using vehicle acceleration, wheel speeds, and braking torque, the vehicle velocity estimated by SMO. To control the system based on wheel slip, half-car model is developed by considering uncertainty of the road slope and aerodynamic drag force. According to the controller, the vehicle ABS model is built with MATLAB Simulink. The response of controller is compared in terms of braking time and stopping distance. The results indicate proposed controller algorithm achieves minimum braking time and minimum stopping distance on selected roads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信