Okwunodulu Nwazulu Innocent, Eze Nkechinyere Lucy, Ndife Joel, U. Anthony
{"title":"高粱与豆芽粉混合配制的补饲大豆粉的品质特性","authors":"Okwunodulu Nwazulu Innocent, Eze Nkechinyere Lucy, Ndife Joel, U. Anthony","doi":"10.11648/J.WJFST.20190304.12","DOIUrl":null,"url":null,"abstract":"Soy-akamu is nutritionally poor hence the improvement by formulating with sprouted soybean to fortify and restore protein and other nutrients lost during processing to prevent hidden hunger. Sprouted soybean obtained from hand dehulled 12h tap water steeped sorted soybean, 72h sprouted and 20min boiled in 0.05% sodium bicarbonate solution was milled with 72h steeped, drained and washed cleaned sorghum seeds according to75: 25, 50: 50 and 25: 75 sorghum; sprouted soybean blends. Blended pasts were sieved and dewatered separately with double layered calico cloth to obtain the pastes. Proximate results showed increase in dried matter content (85.94 to 86.68%) with increase in soybean paste inclusion, moisture content decreased (14.06 to 13.32%) protein increased (5.11 to 39.96%), fat increased (1.51 to 11.21%), fiber increased (1.41 to 4.82%), ash increased (0.46 to 4.61%), carbohydrate decreased (77.44 to 26.07%) and energy increased (335.26 to 364.99Kcal). Bulk density increased (0.33%to 0.66g/ml), viscosity decreased (117.02 to 84µPas), swelling power increased (22.83 to 30.04), gelatinization temperature decreased (66.00 to 45°C) and gelatinization time increased (0.35 to 0.37sec). Gruel from 100% sorghum scored the highest acceptability. Sprouted soybean blending showed an improvement in the nutrients content of soy-akamu and decrease in acceptability beyond 25% inclusion.","PeriodicalId":319691,"journal":{"name":"World Journal of Food Science and Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Quality Characteristics of Soy-akamu Powder Formulated from Sorghum and Sprouted Soybean Flour Blends for Complementary Feeding\",\"authors\":\"Okwunodulu Nwazulu Innocent, Eze Nkechinyere Lucy, Ndife Joel, U. Anthony\",\"doi\":\"10.11648/J.WJFST.20190304.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soy-akamu is nutritionally poor hence the improvement by formulating with sprouted soybean to fortify and restore protein and other nutrients lost during processing to prevent hidden hunger. Sprouted soybean obtained from hand dehulled 12h tap water steeped sorted soybean, 72h sprouted and 20min boiled in 0.05% sodium bicarbonate solution was milled with 72h steeped, drained and washed cleaned sorghum seeds according to75: 25, 50: 50 and 25: 75 sorghum; sprouted soybean blends. Blended pasts were sieved and dewatered separately with double layered calico cloth to obtain the pastes. Proximate results showed increase in dried matter content (85.94 to 86.68%) with increase in soybean paste inclusion, moisture content decreased (14.06 to 13.32%) protein increased (5.11 to 39.96%), fat increased (1.51 to 11.21%), fiber increased (1.41 to 4.82%), ash increased (0.46 to 4.61%), carbohydrate decreased (77.44 to 26.07%) and energy increased (335.26 to 364.99Kcal). Bulk density increased (0.33%to 0.66g/ml), viscosity decreased (117.02 to 84µPas), swelling power increased (22.83 to 30.04), gelatinization temperature decreased (66.00 to 45°C) and gelatinization time increased (0.35 to 0.37sec). Gruel from 100% sorghum scored the highest acceptability. Sprouted soybean blending showed an improvement in the nutrients content of soy-akamu and decrease in acceptability beyond 25% inclusion.\",\"PeriodicalId\":319691,\"journal\":{\"name\":\"World Journal of Food Science and Technology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Food Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.WJFST.20190304.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Food Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.WJFST.20190304.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quality Characteristics of Soy-akamu Powder Formulated from Sorghum and Sprouted Soybean Flour Blends for Complementary Feeding
Soy-akamu is nutritionally poor hence the improvement by formulating with sprouted soybean to fortify and restore protein and other nutrients lost during processing to prevent hidden hunger. Sprouted soybean obtained from hand dehulled 12h tap water steeped sorted soybean, 72h sprouted and 20min boiled in 0.05% sodium bicarbonate solution was milled with 72h steeped, drained and washed cleaned sorghum seeds according to75: 25, 50: 50 and 25: 75 sorghum; sprouted soybean blends. Blended pasts were sieved and dewatered separately with double layered calico cloth to obtain the pastes. Proximate results showed increase in dried matter content (85.94 to 86.68%) with increase in soybean paste inclusion, moisture content decreased (14.06 to 13.32%) protein increased (5.11 to 39.96%), fat increased (1.51 to 11.21%), fiber increased (1.41 to 4.82%), ash increased (0.46 to 4.61%), carbohydrate decreased (77.44 to 26.07%) and energy increased (335.26 to 364.99Kcal). Bulk density increased (0.33%to 0.66g/ml), viscosity decreased (117.02 to 84µPas), swelling power increased (22.83 to 30.04), gelatinization temperature decreased (66.00 to 45°C) and gelatinization time increased (0.35 to 0.37sec). Gruel from 100% sorghum scored the highest acceptability. Sprouted soybean blending showed an improvement in the nutrients content of soy-akamu and decrease in acceptability beyond 25% inclusion.