应用神经网络诊断心肌梗死的超声心动图研究

Cheng Yi, E. Micheli-Tzanakou, D. Shindler, J. Kostis
{"title":"应用神经网络诊断心肌梗死的超声心动图研究","authors":"Cheng Yi, E. Micheli-Tzanakou, D. Shindler, J. Kostis","doi":"10.1109/IEMBS.1993.978530","DOIUrl":null,"url":null,"abstract":"Ultrasonic myocardial echocardiogram is a promising approach to diagnosing myocardial infarctioni'l. We digitize echocardiographic images to study ultrasound backscatter for scar tissue detection. Neural network analysis is a successful approach to scar detection121. We improve the structure of multi-layer perceptton combined with the feedback optimization algorithm ALOPEX to make it more general and we also introduce the noisy train-","PeriodicalId":408657,"journal":{"name":"Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Study of echocardiogram for myocardial infarction using neural networks\",\"authors\":\"Cheng Yi, E. Micheli-Tzanakou, D. Shindler, J. Kostis\",\"doi\":\"10.1109/IEMBS.1993.978530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasonic myocardial echocardiogram is a promising approach to diagnosing myocardial infarctioni'l. We digitize echocardiographic images to study ultrasound backscatter for scar tissue detection. Neural network analysis is a successful approach to scar detection121. We improve the structure of multi-layer perceptton combined with the feedback optimization algorithm ALOPEX to make it more general and we also introduce the noisy train-\",\"PeriodicalId\":408657,\"journal\":{\"name\":\"Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1993.978530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1993.978530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

超声心肌超声心动图是一种很有前途的诊断心肌梗死的方法。我们将超声心动图图像数字化,研究超声后向散射在疤痕组织检测中的应用。神经网络分析是一种成功的疤痕检测方法。我们结合反馈优化算法ALOPEX改进了多层感知器的结构,使其更具通用性,并引入了带噪声的train-
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of echocardiogram for myocardial infarction using neural networks
Ultrasonic myocardial echocardiogram is a promising approach to diagnosing myocardial infarctioni'l. We digitize echocardiographic images to study ultrasound backscatter for scar tissue detection. Neural network analysis is a successful approach to scar detection121. We improve the structure of multi-layer perceptton combined with the feedback optimization algorithm ALOPEX to make it more general and we also introduce the noisy train-
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信