{"title":"集体输入/输出请求的知情预取","authors":"T. Madhyastha, Garth A. Gibson, C. Faloutsos","doi":"10.1145/331532.331545","DOIUrl":null,"url":null,"abstract":"Optimizing collective input/output (I/O) is important for improving throughput of parallel scientific applications. Current research suggests that a specialized collective application programming interface, coupled with system-level optimizations, is necessary to obtain good I/O performance. Unfortunately, collective interfaces require an application to disclose its entire access pattern to fully reorder I/O requests, and cannot flexibly utilize additional memory to improve performance. In this paper we propose and analyze a method of optimizing collective access patterns using informed prefetching that is capable of exploiting any amount of available memory to overlap I/O with computation. We compare this approach to disk-directed I/O, an efficient implementation of a collective I/O interface. Moreover, we prove that under certain conditions, a per-processor prefetch depth equal to the number of drives can guarantee sequential disk accesses for any collectively accessed file. In empirical studies, a prefetch horizon of one to two times the number of disks per processor is sufficient to match the performance of disk-directed I/O for sequentially allocated files. Finally, we develop accurate analytical models to predict the throughput of informed prefetching for collective reads as a function of the per-processor prefetch depth.","PeriodicalId":354898,"journal":{"name":"ACM/IEEE SC 1999 Conference (SC'99)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Informed Prefetching of Collective Input/Output Requests\",\"authors\":\"T. Madhyastha, Garth A. Gibson, C. Faloutsos\",\"doi\":\"10.1145/331532.331545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizing collective input/output (I/O) is important for improving throughput of parallel scientific applications. Current research suggests that a specialized collective application programming interface, coupled with system-level optimizations, is necessary to obtain good I/O performance. Unfortunately, collective interfaces require an application to disclose its entire access pattern to fully reorder I/O requests, and cannot flexibly utilize additional memory to improve performance. In this paper we propose and analyze a method of optimizing collective access patterns using informed prefetching that is capable of exploiting any amount of available memory to overlap I/O with computation. We compare this approach to disk-directed I/O, an efficient implementation of a collective I/O interface. Moreover, we prove that under certain conditions, a per-processor prefetch depth equal to the number of drives can guarantee sequential disk accesses for any collectively accessed file. In empirical studies, a prefetch horizon of one to two times the number of disks per processor is sufficient to match the performance of disk-directed I/O for sequentially allocated files. Finally, we develop accurate analytical models to predict the throughput of informed prefetching for collective reads as a function of the per-processor prefetch depth.\",\"PeriodicalId\":354898,\"journal\":{\"name\":\"ACM/IEEE SC 1999 Conference (SC'99)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 1999 Conference (SC'99)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/331532.331545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 1999 Conference (SC'99)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/331532.331545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Informed Prefetching of Collective Input/Output Requests
Optimizing collective input/output (I/O) is important for improving throughput of parallel scientific applications. Current research suggests that a specialized collective application programming interface, coupled with system-level optimizations, is necessary to obtain good I/O performance. Unfortunately, collective interfaces require an application to disclose its entire access pattern to fully reorder I/O requests, and cannot flexibly utilize additional memory to improve performance. In this paper we propose and analyze a method of optimizing collective access patterns using informed prefetching that is capable of exploiting any amount of available memory to overlap I/O with computation. We compare this approach to disk-directed I/O, an efficient implementation of a collective I/O interface. Moreover, we prove that under certain conditions, a per-processor prefetch depth equal to the number of drives can guarantee sequential disk accesses for any collectively accessed file. In empirical studies, a prefetch horizon of one to two times the number of disks per processor is sufficient to match the performance of disk-directed I/O for sequentially allocated files. Finally, we develop accurate analytical models to predict the throughput of informed prefetching for collective reads as a function of the per-processor prefetch depth.