基于数据挖掘的FDG-PET参数图像痴呆分类

L. Wen, M. Bewley, S. Eberl, M. Fulham, D. Feng
{"title":"基于数据挖掘的FDG-PET参数图像痴呆分类","authors":"L. Wen, M. Bewley, S. Eberl, M. Fulham, D. Feng","doi":"10.1109/ISBI.2008.4541020","DOIUrl":null,"url":null,"abstract":"It remains a challenge to identify the different types of dementia and separate these from various subtypes from the normal effects of ageing. In this paper the potential of parametric images from FDG-PET studies to aid the classification of dementia using data mining techniques was investigated. Scalar, joint, histogram and voxel-level features were used in the investigation with principal component analysis (PCA) for dimensionality reduction. The logistic regression model and the additive logistic regression model were applied in the classification. The results show that cerebral metabolic rate of glucose consumption (CMRGlc) was efficient in the classification of dementia and data mining using voxel-level features with PCA and the logistic regression model method achieving the best classification.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"3 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Classification of dementia from FDG-PET parametric images using data mining\",\"authors\":\"L. Wen, M. Bewley, S. Eberl, M. Fulham, D. Feng\",\"doi\":\"10.1109/ISBI.2008.4541020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It remains a challenge to identify the different types of dementia and separate these from various subtypes from the normal effects of ageing. In this paper the potential of parametric images from FDG-PET studies to aid the classification of dementia using data mining techniques was investigated. Scalar, joint, histogram and voxel-level features were used in the investigation with principal component analysis (PCA) for dimensionality reduction. The logistic regression model and the additive logistic regression model were applied in the classification. The results show that cerebral metabolic rate of glucose consumption (CMRGlc) was efficient in the classification of dementia and data mining using voxel-level features with PCA and the logistic regression model method achieving the best classification.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"3 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

识别不同类型的痴呆症,并将其与衰老正常影响的各种亚型区分开来,仍然是一项挑战。本文研究了FDG-PET研究中参数化图像的潜力,以帮助使用数据挖掘技术对痴呆症进行分类。在调查中使用了标量、联合、直方图和体素级特征,并使用主成分分析(PCA)进行降维。采用逻辑回归模型和加性逻辑回归模型进行分类。结果表明,脑葡萄糖消耗代谢率(CMRGlc)对痴呆的分类是有效的,采用体素级特征的数据挖掘与主成分分析和逻辑回归模型方法的分类效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of dementia from FDG-PET parametric images using data mining
It remains a challenge to identify the different types of dementia and separate these from various subtypes from the normal effects of ageing. In this paper the potential of parametric images from FDG-PET studies to aid the classification of dementia using data mining techniques was investigated. Scalar, joint, histogram and voxel-level features were used in the investigation with principal component analysis (PCA) for dimensionality reduction. The logistic regression model and the additive logistic regression model were applied in the classification. The results show that cerebral metabolic rate of glucose consumption (CMRGlc) was efficient in the classification of dementia and data mining using voxel-level features with PCA and the logistic regression model method achieving the best classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信