{"title":"基于数据挖掘的FDG-PET参数图像痴呆分类","authors":"L. Wen, M. Bewley, S. Eberl, M. Fulham, D. Feng","doi":"10.1109/ISBI.2008.4541020","DOIUrl":null,"url":null,"abstract":"It remains a challenge to identify the different types of dementia and separate these from various subtypes from the normal effects of ageing. In this paper the potential of parametric images from FDG-PET studies to aid the classification of dementia using data mining techniques was investigated. Scalar, joint, histogram and voxel-level features were used in the investigation with principal component analysis (PCA) for dimensionality reduction. The logistic regression model and the additive logistic regression model were applied in the classification. The results show that cerebral metabolic rate of glucose consumption (CMRGlc) was efficient in the classification of dementia and data mining using voxel-level features with PCA and the logistic regression model method achieving the best classification.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"3 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Classification of dementia from FDG-PET parametric images using data mining\",\"authors\":\"L. Wen, M. Bewley, S. Eberl, M. Fulham, D. Feng\",\"doi\":\"10.1109/ISBI.2008.4541020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It remains a challenge to identify the different types of dementia and separate these from various subtypes from the normal effects of ageing. In this paper the potential of parametric images from FDG-PET studies to aid the classification of dementia using data mining techniques was investigated. Scalar, joint, histogram and voxel-level features were used in the investigation with principal component analysis (PCA) for dimensionality reduction. The logistic regression model and the additive logistic regression model were applied in the classification. The results show that cerebral metabolic rate of glucose consumption (CMRGlc) was efficient in the classification of dementia and data mining using voxel-level features with PCA and the logistic regression model method achieving the best classification.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"3 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of dementia from FDG-PET parametric images using data mining
It remains a challenge to identify the different types of dementia and separate these from various subtypes from the normal effects of ageing. In this paper the potential of parametric images from FDG-PET studies to aid the classification of dementia using data mining techniques was investigated. Scalar, joint, histogram and voxel-level features were used in the investigation with principal component analysis (PCA) for dimensionality reduction. The logistic regression model and the additive logistic regression model were applied in the classification. The results show that cerebral metabolic rate of glucose consumption (CMRGlc) was efficient in the classification of dementia and data mining using voxel-level features with PCA and the logistic regression model method achieving the best classification.