{"title":"主观与客观的人脸图像质量评价用于人脸识别","authors":"Ali Khodabakhsh, Marius Pedersen, C. Busch","doi":"10.1145/3345336.3345338","DOIUrl":null,"url":null,"abstract":"The performance of any face recognition system gets affected by the quality of the probe and the reference images. Rejecting or recapturing images with low-quality can improve the overall performance of the biometric system. There are many statistical as well as learning-based methods that provide quality scores given an image for the task of face recognition. In this study, we take a different approach by asking 26 participants to provide subjective quality scores that represent the ease of recognizing the face on the images from a smartphone based face image dataset. These scores are then compared to measures implemented from ISO/IEC TR 29794-5. We observe that the subjective scores outperform the implemented objective scores while having a low correlation with them. Furthermore, we analyze the effect of pose, illumination, and distance on face recognition similarity scores as well as the generated mean opinion scores.","PeriodicalId":262849,"journal":{"name":"International Conference on Biometrics Engineering and Application","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Subjective Versus Objective Face Image Quality Evaluation For Face Recognition\",\"authors\":\"Ali Khodabakhsh, Marius Pedersen, C. Busch\",\"doi\":\"10.1145/3345336.3345338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of any face recognition system gets affected by the quality of the probe and the reference images. Rejecting or recapturing images with low-quality can improve the overall performance of the biometric system. There are many statistical as well as learning-based methods that provide quality scores given an image for the task of face recognition. In this study, we take a different approach by asking 26 participants to provide subjective quality scores that represent the ease of recognizing the face on the images from a smartphone based face image dataset. These scores are then compared to measures implemented from ISO/IEC TR 29794-5. We observe that the subjective scores outperform the implemented objective scores while having a low correlation with them. Furthermore, we analyze the effect of pose, illumination, and distance on face recognition similarity scores as well as the generated mean opinion scores.\",\"PeriodicalId\":262849,\"journal\":{\"name\":\"International Conference on Biometrics Engineering and Application\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Biometrics Engineering and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3345336.3345338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Biometrics Engineering and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3345336.3345338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Subjective Versus Objective Face Image Quality Evaluation For Face Recognition
The performance of any face recognition system gets affected by the quality of the probe and the reference images. Rejecting or recapturing images with low-quality can improve the overall performance of the biometric system. There are many statistical as well as learning-based methods that provide quality scores given an image for the task of face recognition. In this study, we take a different approach by asking 26 participants to provide subjective quality scores that represent the ease of recognizing the face on the images from a smartphone based face image dataset. These scores are then compared to measures implemented from ISO/IEC TR 29794-5. We observe that the subjective scores outperform the implemented objective scores while having a low correlation with them. Furthermore, we analyze the effect of pose, illumination, and distance on face recognition similarity scores as well as the generated mean opinion scores.