计算几何的实用超立方体算法

P. MacKenzie, Q. Stout
{"title":"计算几何的实用超立方体算法","authors":"P. MacKenzie, Q. Stout","doi":"10.1109/FMPC.1990.89442","DOIUrl":null,"url":null,"abstract":"The use of the cross-stitching technique to solve problems in computational geometry on the hypercube is discussed. Given n inputs distributed one per processor on a hypercube with n processors. The cross-stitching paradigm runs in Theta (log/sup 2/n) time with very low constants. This form of 2-D divide-and-conquer is illustrated, some of its applications are considered, and its practicality is shown by the computation of exact communication constants for the authors' algorithms.<<ETX>>","PeriodicalId":193332,"journal":{"name":"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Practical hypercube algorithms for computational geometry\",\"authors\":\"P. MacKenzie, Q. Stout\",\"doi\":\"10.1109/FMPC.1990.89442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of the cross-stitching technique to solve problems in computational geometry on the hypercube is discussed. Given n inputs distributed one per processor on a hypercube with n processors. The cross-stitching paradigm runs in Theta (log/sup 2/n) time with very low constants. This form of 2-D divide-and-conquer is illustrated, some of its applications are considered, and its practicality is shown by the computation of exact communication constants for the authors' algorithms.<<ETX>>\",\"PeriodicalId\":193332,\"journal\":{\"name\":\"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMPC.1990.89442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMPC.1990.89442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

讨论了利用交叉拼接技术解决超立方体计算几何问题的方法。给定n个输入,分布在一个有n个处理器的超立方体上,每个处理器一个输入。交叉拼接模式在Theta (log/sup 2/n)时间内运行,常数非常低。本文对这种二维分治法进行了说明,讨论了它的一些应用,并通过计算作者算法的精确通信常数证明了它的实用性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical hypercube algorithms for computational geometry
The use of the cross-stitching technique to solve problems in computational geometry on the hypercube is discussed. Given n inputs distributed one per processor on a hypercube with n processors. The cross-stitching paradigm runs in Theta (log/sup 2/n) time with very low constants. This form of 2-D divide-and-conquer is illustrated, some of its applications are considered, and its practicality is shown by the computation of exact communication constants for the authors' algorithms.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信