基于SDN在线算法的准入控制

Jérémie Leguay, L. Maggi, M. Draief, Stefano Paris, S. Chouvardas
{"title":"基于SDN在线算法的准入控制","authors":"Jérémie Leguay, L. Maggi, M. Draief, Stefano Paris, S. Chouvardas","doi":"10.1109/NOMS.2016.7502884","DOIUrl":null,"url":null,"abstract":"By offloading the control plane to powerful computing platforms running on commodity hardware, Software Defined Networking (SDN) unleashes the potential to operate computation intensive machine learning tools and solve complex optimization problems in a centralized fashion. This paper studies such an opportunity under the framework of the centralized SDN Admission Control (AC) problem. We first review and adapt some of the key AC algorithms from the literature, and evaluate their performance under realistic settings. We then propose to take a step further and build an AC meta-algorithm that is able to track the best AC algorithm under unknown traffic conditions. To this aim, we exploit a machine learning technique called Strategic Expert meta-Algorithm (SEA).","PeriodicalId":344879,"journal":{"name":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Admission control with online algorithms in SDN\",\"authors\":\"Jérémie Leguay, L. Maggi, M. Draief, Stefano Paris, S. Chouvardas\",\"doi\":\"10.1109/NOMS.2016.7502884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By offloading the control plane to powerful computing platforms running on commodity hardware, Software Defined Networking (SDN) unleashes the potential to operate computation intensive machine learning tools and solve complex optimization problems in a centralized fashion. This paper studies such an opportunity under the framework of the centralized SDN Admission Control (AC) problem. We first review and adapt some of the key AC algorithms from the literature, and evaluate their performance under realistic settings. We then propose to take a step further and build an AC meta-algorithm that is able to track the best AC algorithm under unknown traffic conditions. To this aim, we exploit a machine learning technique called Strategic Expert meta-Algorithm (SEA).\",\"PeriodicalId\":344879,\"journal\":{\"name\":\"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOMS.2016.7502884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2016.7502884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

通过将控制平面卸载到运行在商用硬件上的强大计算平台,软件定义网络(SDN)释放了操作计算密集型机器学习工具的潜力,并以集中的方式解决复杂的优化问题。本文在集中式SDN准入控制(AC)问题的框架下研究了这种机会。我们首先从文献中回顾和改编了一些关键的AC算法,并评估了它们在现实环境下的性能。然后,我们建议更进一步,构建一个能够在未知交通条件下跟踪最佳AC算法的AC元算法。为此,我们利用了一种称为战略专家元算法(SEA)的机器学习技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Admission control with online algorithms in SDN
By offloading the control plane to powerful computing platforms running on commodity hardware, Software Defined Networking (SDN) unleashes the potential to operate computation intensive machine learning tools and solve complex optimization problems in a centralized fashion. This paper studies such an opportunity under the framework of the centralized SDN Admission Control (AC) problem. We first review and adapt some of the key AC algorithms from the literature, and evaluate their performance under realistic settings. We then propose to take a step further and build an AC meta-algorithm that is able to track the best AC algorithm under unknown traffic conditions. To this aim, we exploit a machine learning technique called Strategic Expert meta-Algorithm (SEA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信