基于遗传算法的眼镜轮廓提取

D. Borza, R. Danescu, A. Darabant
{"title":"基于遗传算法的眼镜轮廓提取","authors":"D. Borza, R. Danescu, A. Darabant","doi":"10.1109/ICCP.2015.7312680","DOIUrl":null,"url":null,"abstract":"This paper presents an eyeglasses contour extraction method that uses genetic algorithms to find the exact shape of the lenses. An efficient shape description, based on Fourier coefficients, is used to represent the shape of the eyeglasses, allowing a wide range of shapes to be represented with a small number of parameters. The proposed method does not require the position of the eyes to be known in advance. The conducted experiments demonstrate the effectiveness of the proposed solution.","PeriodicalId":158453,"journal":{"name":"2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eyeglasses contour extraction using genetic algorithms\",\"authors\":\"D. Borza, R. Danescu, A. Darabant\",\"doi\":\"10.1109/ICCP.2015.7312680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an eyeglasses contour extraction method that uses genetic algorithms to find the exact shape of the lenses. An efficient shape description, based on Fourier coefficients, is used to represent the shape of the eyeglasses, allowing a wide range of shapes to be represented with a small number of parameters. The proposed method does not require the position of the eyes to be known in advance. The conducted experiments demonstrate the effectiveness of the proposed solution.\",\"PeriodicalId\":158453,\"journal\":{\"name\":\"2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2015.7312680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2015.7312680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于遗传算法的眼镜轮廓提取方法。基于傅里叶系数的有效形状描述用于表示眼镜的形状,允许用少量参数表示大范围的形状。所提出的方法不需要事先知道眼睛的位置。实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eyeglasses contour extraction using genetic algorithms
This paper presents an eyeglasses contour extraction method that uses genetic algorithms to find the exact shape of the lenses. An efficient shape description, based on Fourier coefficients, is used to represent the shape of the eyeglasses, allowing a wide range of shapes to be represented with a small number of parameters. The proposed method does not require the position of the eyes to be known in advance. The conducted experiments demonstrate the effectiveness of the proposed solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信